Difference between revisions of "2018 MPFG Problem 18"
(→Solution 1) |
(→Solution 1) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
<math> = (x-1) \cdot (x-w_1)(x-w_2)......(x-w_{15})</math> <math>(\#)</math> | <math> = (x-1) \cdot (x-w_1)(x-w_2)......(x-w_{15})</math> <math>(\#)</math> | ||
− | <math> \cdot (x-\overline{w_1})(x-\overline{w_2})......(x-\overline{w_{15}})</math> <math>(\#\#)</math> | + | <math>\space</math> <math>\space</math> <math>\space</math> <math>\cdot (x-\overline{w_1})(x-\overline{w_2})......(x-\overline{w_{15}})</math> <math>(\#\#)</math> |
(Remind that <math>w^k</math> and <math>w_k</math> are not the same!) | (Remind that <math>w^k</math> and <math>w_k</math> are not the same!) | ||
Line 18: | Line 18: | ||
(<math>w^k = e^\frac{2\pi ik}{31}, w_k = e^\frac{2\pi ik^{2}}{31}</math>) | (<math>w^k = e^\frac{2\pi ik}{31}, w_k = e^\frac{2\pi ik^{2}}{31}</math>) | ||
− | When x is real, <math>\left|(\#)\right| = \left|(\#\#)\right|</math>. | + | When <math>x</math> is real, <math>\left|(\#)\right| = \left|(\#\#)\right|</math>. |
− | <math>\left|x^{31}-1\right| = \left|x-1\right| </math> | + | <math>\left|x^{31}-1\right| = \left|x-1\right| \cdot \left|(\#)\right| \cdot \left|(\#\#)\right| = \left|x-1\right| \cdot \left|(\#)^2\right|</math> |
Substitute with <math>x = -1</math>, we get <math>\left|(\#)\right| = 1</math> | Substitute with <math>x = -1</math>, we get <math>\left|(\#)\right| = 1</math> | ||
Line 26: | Line 26: | ||
Therefore | Therefore | ||
− | <math>\left|\Pi_{k=0}^{15} (1+e^{2\pi ik^{2}/31})\right| = \left|(x-1)(x-w_1)(x-w_2)......(x-w_{15})\right| | + | <math>\left|\Pi_{k=0}^{15} (1+e^{2\pi ik^{2}/31})\right|_{x=-1} = \left|(x-1)(x-w_1)(x-w_2)......(x-w_{15})\right|_{x=-1}</math> <math>=\left|(-1-1)\right| \cdot 1 = \boxed{2}</math> |
~cassphe | ~cassphe |
Latest revision as of 12:23, 25 August 2025
Problem
Evaluate the expression
Solution 1
(Remind that and
are not the same!)
()
When is real,
.
Substitute with , we get
Therefore
~cassphe