Difference between revisions of "User:Grogg007"

m (Proving \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}:)
m (Visitor Count:)
 
(15 intermediate revisions by 10 users not shown)
Line 9: Line 9:
 
If you're an AoPS Wiki user who is visiting my page for the first time, you can increase the number below by 1.  
 
If you're an AoPS Wiki user who is visiting my page for the first time, you can increase the number below by 1.  
  
</font></div><center><font size="1000px">32</font></center>
+
</font></div><center><font size="1000px">41</font></center>
  
 
I got this idea from [[User:Aoum|Aoum]], who also included a visitor count on his user page. I thought it would be cool to try it out on mine too
 
I got this idea from [[User:Aoum|Aoum]], who also included a visitor count on his user page. I thought it would be cool to try it out on mine too
  
 
==Contributions:==
 
==Contributions:==
 +
 +
* [[Basel Problem]]
 +
 
===Written Solutions===
 
===Written Solutions===
  
Line 55: Line 58:
 
*: [[2021 AMC 12A Problems/Problem 17| 2021 AMC 12A #17 Solution 4]] (Law of Sines & Similar Triangles)
 
*: [[2021 AMC 12A Problems/Problem 17| 2021 AMC 12A #17 Solution 4]] (Law of Sines & Similar Triangles)
 
*: [[2021 AMC 12A Problems/Problem 19| 2021 AMC 12A #19 Solution 4]] (Simple Trig)
 
*: [[2021 AMC 12A Problems/Problem 19| 2021 AMC 12A #19 Solution 4]] (Simple Trig)
 +
*: [[2021 Fall AMC 10A Problems/Problem 24| 2021 Fall AMC 10A #24 Solution 1.5]] (Casework on top face)
 
*: [[2021 AMC 10A Problems/Problem 25| 2021 AMC 10A #25 Solution 4]] (Casework on top two rows)
 
*: [[2021 AMC 10A Problems/Problem 25| 2021 AMC 10A #25 Solution 4]] (Casework on top two rows)
 
*: [[2021 AMC 10B Problems/Problem 11| 2021 AMC 10B #11 Solution 3]] (Rational Function)
 
*: [[2021 AMC 10B Problems/Problem 11| 2021 AMC 10B #11 Solution 3]] (Rational Function)
Line 87: Line 91:
 
*: [[2025 AIME I Problems/Problem 10]]  
 
*: [[2025 AIME I Problems/Problem 10]]  
 
*: [[2025 AIME I Problems/Problem 11]]
 
*: [[2025 AIME I Problems/Problem 11]]
 +
*: [[2025 AIME II Problems/Problem 10]]
 
* '''AMC'''  
 
* '''AMC'''  
 
*: [[2018 AMC 12A Problems/Problem 21]]
 
*: [[2018 AMC 12A Problems/Problem 21]]
Line 108: Line 113:
 
* [[2023 AMC 10B Problems/Problem 21]] (Clarification)
 
* [[2023 AMC 10B Problems/Problem 21]] (Clarification)
 
* [https://artofproblemsolving.com/wiki/index.php/AMC_historical_results#USAMO_.28March_19.2C_2025.29| AMC Historical Results] (2025 USAJMO/USAMO Stats)
 
* [https://artofproblemsolving.com/wiki/index.php/AMC_historical_results#USAMO_.28March_19.2C_2025.29| AMC Historical Results] (2025 USAJMO/USAMO Stats)
 
 
==Proving the infinite sum of reciprocal squares:==
 
 
The derivative of a function <math>f(x)</math> is defined as <math>f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.</math> So the derivative of <math>f(x) = e^x</math> is
 
<cmath>\lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h}.</cmath>
 
Let <math>e^h - 1 = y.</math> Then as <math>h \to 0</math>, <math>y \to 0,</math> and <math>h = \ln(1+y).</math>
 
<cmath>e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x \lim_{y \to 0} \frac{y}{\ln(1+y)} = e^x \lim_{y \to 0} \frac{1}{\ln(1+y)^{1/y}} = e^x \cdot \frac{1}{\ln \left( \lim_{y \to 0} (1+y)^{1/y} \right)} = e^x \cdot \frac{1}{\ln e} = e^x.</cmath>
 
Since the derivative of <math>e^x</math> is <math>e^x</math> itself, the <math>n</math>th derivative of <math>e^x</math> will be <math>e^x.</math>
 
Consider the infinite sum <math>P(x) = \sum_{n=0}^{\infty} a_nx^n = a_0 + a_1x + a_2x^2 + \dots</math>
 
The derivatives at <math>x=0</math> are <math>P(0) = a_0,</math> <math>P'(0) = a_1,</math> <math>P''(0) = 2a_2,</math> <math>P'''(0) = 3 \cdot 2a_3,</math> and so on, with <math>P^{(n)}(0) = n!a_n.</math>
 
Let this sum equal the function <math>f(x) = e^x.</math> Then we must have <math>f^{(n)}(0) = P^{(n)}(0),</math> which means <math>n!a_n = f^{(n)}(0) = e^0 = 1,</math> so <math>a_n = \frac{1}{n!}.</math>
 
The series for <math>e^x</math> is thus <math>e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots</math>
 
Now, from Euler's Formula, we have <math>e^{ix} = \cos(x) + i\sin(x).</math>
 
Using the infinite series expansion and substituting <math>ix</math> for <math>x,</math> we get:
 
<cmath>e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \dots</cmath>
 
<cmath>= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} + \dots</cmath>
 
<cmath>= \left( 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \right) + i \left( x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \right).</cmath>
 
By equating the real and imaginary parts of the series with Euler's formula, we find the series expansions for sine and cosine:
 
<cmath>\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots</cmath>
 
<cmath>\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots</cmath>
 
Since <math>\sin(n\pi) = 0</math> for all integers <math>n,</math> the roots of the function <math>\sin(x)/x</math> are at <math>x = \pm \pi, \pm 2\pi, \pm 3\pi, \dots</math>
 
We can factor the polynomial expansion in terms of its roots:
 
<cmath>\sin(x) = x( 1 - \frac{x^2}{\pi^2})( 1 - \frac{x^2}{(2\pi)^2})( 1 - \frac{x^2}{(3\pi)^2}) \dots</cmath>
 
Now, consider the coefficient of the <math>x^3</math> term in the expansion of <math>\sin(x).</math>
 
From the infinite product, the coefficient of the <math>x^3</math> term is found by multiplying the <math>x</math> with each term with the <math>-(x^2/n^2\pi^2):</math>
 
<cmath>\text{Coefficient of } x^3 = -\left( \frac{1}{\pi^2} + \frac{1}{(2\pi)^2} + \frac{1}{(3\pi)^2} + \dots \right) = -\frac{1}{3!}</cmath>
 
Equating the two expressions for the <math>x^3</math> coefficient, we get:
 
<cmath>-\frac{1}{6} = -\frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2}</cmath>
 
<cmath>\implies \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.</cmath>
 
  
 
==More:==  
 
==More:==  

Latest revision as of 15:53, 28 September 2025

About Me:

- I’m Nathan

- I like comp math, music, coding and physics

- Sophomore, class of 2028

Visitor Count:

If you're an AoPS Wiki user who is visiting my page for the first time, you can increase the number below by 1.

41

I got this idea from Aoum, who also included a visitor count on his user page. I thought it would be cool to try it out on mine too

Contributions:

Written Solutions

Video Solutions

Additional contributions

More: