Difference between revisions of "2022 MPFG Problem19"
m (→Problem) |
m (→Solution 1) |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 6: | Line 6: | ||
Let <math>R</math> be the locus of points <math>P</math> such that <math>P</math> is the intersection of two lines, one of the form <math>Ax + By = 1</math> where <math>(A,B) \in S_-</math> and the other of the form <math>Cx + Dy = 1</math> where <math>(C, D) \in S_+</math>. What is the area of <math>R</math>? Express your answer as a fraction in simplest form. | Let <math>R</math> be the locus of points <math>P</math> such that <math>P</math> is the intersection of two lines, one of the form <math>Ax + By = 1</math> where <math>(A,B) \in S_-</math> and the other of the form <math>Cx + Dy = 1</math> where <math>(C, D) \in S_+</math>. What is the area of <math>R</math>? Express your answer as a fraction in simplest form. | ||
+ | |||
+ | ==Solution 1== | ||
Because <math>Ax+By=1,Cx+Dy=1 ==> (A,B),(C,D)</math> is a solution set of <math>xX+yY=1</math>, which means that the <math>2</math> coordinates are on the line of <math>xX+yY=1</math>. | Because <math>Ax+By=1,Cx+Dy=1 ==> (A,B),(C,D)</math> is a solution set of <math>xX+yY=1</math>, which means that the <math>2</math> coordinates are on the line of <math>xX+yY=1</math>. | ||
− | <math>xX+yY=1 ==> \frac{x}{\frac{1}{ | + | <math>xX+yY=1 ==> \frac{x}{\frac{1}{X}}+\frac{y}{\frac{1}{Y}} = 1</math> |
<math>S=\int_{x_0}^{x_1} y(x) \,dx</math> | <math>S=\int_{x_0}^{x_1} y(x) \,dx</math> | ||
Let <math>m=\frac{1}{x}</math>. | Let <math>m=\frac{1}{x}</math>. | ||
+ | |||
+ | [[File:2022mpfg19.png|750px|center]] | ||
<math>\frac{1}{a} = \frac{m-1}{m} ==> a=\frac{m}{m-1} = \frac{\frac{1}{x}}{\frac{1}{x}-1} = \frac{1}{1-x} = \frac{1}{y_1}</math> | <math>\frac{1}{a} = \frac{m-1}{m} ==> a=\frac{m}{m-1} = \frac{\frac{1}{x}}{\frac{1}{x}-1} = \frac{1}{1-x} = \frac{1}{y_1}</math> | ||
− | <math>\frac{b}{2} = \frac{m}{m+1} ==> b=\frac{2m}{m+1} = \frac{\frac{2}{x}}{\frac{1}{x}+1} = \frac{2}{1+x} = \frac{1}{y_1}</math> | + | <math>\frac{b}{2} = \frac{m}{m+1} ==> b=\frac{2m}{m+1} = \frac{\frac{2}{x}}{\frac{1}{x}+1} = \frac{2}{1+x} = \frac{1}{y_2}</math> |
+ | |||
+ | <math>\left| y_2 - y_1 \right| = (1-x) -(\frac{1+x}{2}) = (-\frac{3}{2}x+\frac{1}{2})</math> | ||
− | <math> | + | and m(<math>\frac{1}{x}</math>) ranging from 3 to infinite <math>==></math> <math>x_0=0</math> , <math>x_1=\frac{1}{3}</math> |
− | <math>S = 2\int_{0}^\frac{1}{3} (-\frac{3}{2}x+\frac{1}{2}) \,dx</math> | + | <math>S = 2\int_{0}^\frac{1}{3} (-\frac{3}{2}x+\frac{1}{2}) \,dx</math> (times 2 because on both sides) |
<math>=\left. 2(\frac{3}{4}x^2+\frac{1}{2}x)\right|_{0}^{\frac{1}{3}} = 2(-\frac{1}{12} + \frac{1}{6}) = \boxed{\frac{1}{6}}</math> | <math>=\left. 2(\frac{3}{4}x^2+\frac{1}{2}x)\right|_{0}^{\frac{1}{3}} = 2(-\frac{1}{12} + \frac{1}{6}) = \boxed{\frac{1}{6}}</math> | ||
~cassphe | ~cassphe |
Latest revision as of 12:26, 3 September 2025
Problem
Let be the semicircular arc defined by
Let
be the semicircular arc defined by
Let be the locus of points
such that
is the intersection of two lines, one of the form
where
and the other of the form
where
. What is the area of
? Express your answer as a fraction in simplest form.
Solution 1
Because is a solution set of
, which means that the
coordinates are on the line of
.
Let .
and m() ranging from 3 to infinite
,
(times 2 because on both sides)
~cassphe