Difference between revisions of "2025 SSMO Accuracy Round Problems/Problem 1"

(Created page with "==Problem== An infinite sequence of real numbers <math>a_1, a_2, \dots</math> satisfies <cmath>a_n = a_1+a_2+\dots+a_{n-1}</cmath> for all positive integers <math>n > 1</math...")
 
(Solution)
 
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
 +
 +
Note that for every positive integer <math>n > 2</math>, by the given recurrence relation, we have
 +
\begin{align*}
 +
a_n &= a_{n-1} + a_{n-2} + \cdots + a_1 \\
 +
&= (a_{n-2} + \cdots + a_1) + a_{n-2} + \cdots + a_1 \\
 +
&= 2(a_{n-2} + \cdots + a_1) \\
 +
&= 2a_{n-1}.
 +
\end{align*}
 +
Therefore, <math>a_{25} = 2a_{24} = 4a_{23} = 8a_{22} = 16a_{21} = 32a_{20} = \boxed{800}</math>.
 +
 +
~Sedro

Latest revision as of 01:54, 11 September 2025

Problem

An infinite sequence of real numbers $a_1, a_2, \dots$ satisfies \[a_n = a_1+a_2+\dots+a_{n-1}\] for all positive integers $n > 1$. Given that $a_{20}=25,$ find $a_{25}$.

Solution

Note that for every positive integer $n > 2$, by the given recurrence relation, we have \begin{align*} a_n &= a_{n-1} + a_{n-2} + \cdots + a_1 \\ &= (a_{n-2} + \cdots + a_1) + a_{n-2} + \cdots + a_1 \\ &= 2(a_{n-2} + \cdots + a_1) \\ &= 2a_{n-1}. \end{align*} Therefore, $a_{25} = 2a_{24} = 4a_{23} = 8a_{22} = 16a_{21} = 32a_{20} = \boxed{800}$.

~Sedro