Difference between revisions of "2025 SSMO Accuracy Round Problems/Problem 4"
(Created page with "==Problem== Let <math>a,</math> <math>b,</math> and <math>c</math> be the roots of the polynomial <math>x^3+4x^2-3x-4</math>. Suppose that <cmath>\left|\frac{a}{b+c}+\frac{b...") |
(→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | Let <math>f(x) = x^3 + 4x^2 - 3x - 4 =(x-a)(x-b)(x-c)</math>. By Vieta, <math>a+b+c = -4</math>. We can use this fact to manipulate the expression whose absolute value we seek. We have | ||
+ | \begin{align*} \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} &= \frac{a(c+a)(a+b) + b(a+b)(b+c) + c(b+c)(c+a)}{(a+b)(b+c)(c+a)} \\ | ||
+ | &= \frac{a(-4-b)(-4-c) + b(-4-c)(-4-a) + c(-4-a)(-4-b)}{(-4-a)(-4-b)(-4-c)} \\ | ||
+ | &= \frac{16(a+b+c) + 8(ab+bc+ca) + 3abc}{f(-4)}. | ||
+ | \end{align*} | ||
+ | The rest is computation; we have <math>f(-4) = 8</math>, and by Vieta, we know that <math>a+b+c = -4</math>, <math>ab+bc+ca = -3</math>, and <math>abc = 4</math>. Plugging everything in, we find that | ||
+ | \begin{align*} | ||
+ | \left | \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \right | &= \left| \frac{16(-4) + 8(-3) + 3(4)}{8} \right | \\ | ||
+ | &= \frac{19}{2}. \end{align*} | ||
+ | We extract <math>19+2 = \boxed{21}</math>. | ||
+ | |||
+ | ~Sedro |
Latest revision as of 20:09, 12 September 2025
Problem
Let
and
be the roots of the polynomial
. Suppose that
for relatively prime positive integers
and
. Find
.
Solution
Let . By Vieta,
. We can use this fact to manipulate the expression whose absolute value we seek. We have
\begin{align*} \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} &= \frac{a(c+a)(a+b) + b(a+b)(b+c) + c(b+c)(c+a)}{(a+b)(b+c)(c+a)} \\
&= \frac{a(-4-b)(-4-c) + b(-4-c)(-4-a) + c(-4-a)(-4-b)}{(-4-a)(-4-b)(-4-c)} \\
&= \frac{16(a+b+c) + 8(ab+bc+ca) + 3abc}{f(-4)}.
\end{align*}
The rest is computation; we have
, and by Vieta, we know that
,
, and
. Plugging everything in, we find that
\begin{align*}
\left | \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \right | &= \left| \frac{16(-4) + 8(-3) + 3(4)}{8} \right | \\
&= \frac{19}{2}. \end{align*}
We extract
.
~Sedro