Difference between revisions of "2023 SSMO Relay Round 1 Problems/Problem 2"
(→Solution) |
|||
Line 6: | Line 6: | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
S = \sum_{i=0}^\infty a_i &= a_0+a_1+a_2+\sum_{i=3}^\infty a_i\\ | S = \sum_{i=0}^\infty a_i &= a_0+a_1+a_2+\sum_{i=3}^\infty a_i\\ | ||
− | &= | + | &= 3+1+2022+\sum_{i=3}^\infty \left(a_{i-1}-\frac{a_{i-3}}{8}\right)\\ |
− | &= | + | &= 2026+\sum_{i=3}^{\infty}a_{i-1}-\sum_{i=3}^\infty \frac{a_{i-3}}{8}\\ |
− | &= | + | &= 2026+\sum_{i=2}^\infty a_i-\frac{\sum_{i=0}a_i}{8}\\ |
− | &= | + | &= 2026+\left(\left[ \sum_{i=0}^\infty a_i \right]-a_0-a_1\right)-\frac{S}{8}\\ |
− | &= | + | &= 2026+(S-3-1)-\frac{S}{8}\\ |
&= 2022+\frac{7S}{8}.\\ | &= 2022+\frac{7S}{8}.\\ | ||
\end{align*}</cmath> | \end{align*}</cmath> |
Latest revision as of 17:15, 15 September 2025
Problem
Let . Let
, and let
for
Find
Solution
We have . Let
We have
~pinkpig