Difference between revisions of "Euc20197/Sub-Problem 2"
(→Problem) |
(→Solution 1) |
||
| (8 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
| − | Consider the function <math>f(x) = x^2 - 2x</math>. Determine all real numbers <math>x</math> so that <math>x</math> satisfy <math>f(f(f(x))) = 3</math> | + | Consider the function <math>f(x) = x^2 - 2x</math>. Determine all real numbers <math>x</math> so that <math>x</math> satisfy <math>f(f(f(x))) = 3</math>. |
| + | |||
| + | ==Solution 1== | ||
| + | Let's say that <math>f(f(x))=a</math>. Then, if <math>f(a)=3</math>, then <math>a^2-2a-3=0</math>, so <math>a=-1</math> or <math>3</math>. Now, let's do <math>f(f(x))=a</math> and call <math>f(x)=b</math> (so basically we are doing <math>f(b)=a</math>). Here, <math>a=-1</math> or <math>3</math>. If <math>a=3</math>, then <math>b=3</math> or <math>-1</math>. If <math>a=-1</math>, then <math>b^2-2b=-1</math>, so <math>b^2-2b+1=0</math>. Here, <math>b=1</math> is the only solution. Now, let's do <math>f(x)=b</math>. Here, because from <math>f(b)=a</math> we have the possibilities of <math>b=1, -1,</math> or <math>3</math>, so we have <math>f(x)=1, -1,</math> or <math>3</math>. If <math>f(x)=3</math>, then <math>x=-1</math> or <math>3</math>. If <math>f(x)=-1</math>, then <math>x=1</math>. If <math>f(x)=1</math>, then we have <math>x^2-2x=1</math>, so <math>x^2-2x-1=0</math>. Here, after applying the quadratic formula, it will give us <math>x=1-\sqrt2</math> or <math>1+\sqrt2</math>, so our only possibilities are <math>\boxed{3, -1, 1, 1+\sqrt2,}</math> and <math>\boxed{1-\sqrt2}</math>. | ||
| + | |||
| + | |||
| + | ~Yuhao2012 | ||
| + | |||
| + | ~minor changes by Baihly2024 | ||
== Video Solution == | == Video Solution == | ||
Latest revision as of 16:30, 12 October 2025
Problem
Consider the function
. Determine all real numbers
so that
satisfy
.
Solution 1
Let's say that
. Then, if
, then
, so
or
. Now, let's do
and call
(so basically we are doing
). Here,
or
. If
, then
or
. If
, then
, so
. Here,
is the only solution. Now, let's do
. Here, because from
we have the possibilities of
or
, so we have
or
. If
, then
or
. If
, then
. If
, then we have
, so
. Here, after applying the quadratic formula, it will give us
or
, so our only possibilities are
and
.
~Yuhao2012
~minor changes by Baihly2024
Video Solution
https://www.youtube.com/watch?v=M4gzTG8HnQ4
~North America Math Contest Go Go Go