Difference between revisions of "2006 iTest Problems/Problem 38"
(→Solution 1) |
(→See Also) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
==Solution 1== | ==Solution 1== | ||
− | Place circle <math>\Gamma_1</math> with center <math>O_1=(0,0)</math> and radius <math>R_1</math> so that <math>\overline{AB}</math> is the diameter on the x-axis with <math>A=(-R_1,0)</math>, <math>B=(R_1,0)</math>. Then <math>C</math> lies at <math>(R_1-7,0)</math>. Let point D lie on <math>\Gamma_1</math> and let <math>BD=CD=10</math>. Then <math>(x-R_1)^2+y^2=100</math>, and <math>(X-(R_1-7))^2+y^2=100</math>. Subtracting gives <math>14x-14R_1+49=0</math>, so <math>x=R_1-3.5</math>. Then <math>(x-R_1)^2+y^2=100</math> means that <math>y^2=100-3.5^2=\frac{351}{4}</math>, so <math>D=(R_1-3.5,\frac{\sqrt{351}}{2}</math>. Since <math>D</math> lies on <math>\Gamma_1</math>, <math>x^2+y^2=R_1^2</math> means that <math>(R_1-3.5)^2+\frac{351}{4}=R_1^2</math>. Solving for <math>R_1</math> yields that <math>R_1=\frac{100}{7}</math>. Therefore, <math>C=(\frac{51}{7},0)</math> and <math>D=(\frac{151}{14},\frac{\sqrt{351}}{2})</math>. Since segment <math>\overline{AC}</math> is a diameter of <math>\Gamma_2</math>, knowing that A=(\frac{-100}{7}, 0) and <math>C=(\frac{51}{7},0)</math>, <math>AC=\frac{151}{7}</math>, so the center of <math>\Gamma_2</math> is the midpoint of <math>\overline{AC}</math>, which is <math>(-3.5,0)</math>, and it has radius <math>\frac{AC}{2}=\frac{151}{14}</math>. We then find that the equation of <math>CD</math> is <math>-\frac{\sqrt{351}}{7}x+y+\frac{\sqrt{351}*51}{49}=0</math>. To find the center of circle <math>\omega</math>, we can use the tangencies in the problem. Internal tangency to <math>\Gamma_1</math> and external tangency to <math>\Gamma_2</math> give <math>h^2+k^2=(R_1-r)^2=(\frac{100}{7}-r)^2</math> and <math>(h+3.5)^2+k^2=(R_2+r)^2=(\frac{151}{14}+r)^2</math>, where <math>h,k</math> are the coordinates of the center of circle <math>\omega</math> and <math>r</math> is the radius. Subtracting the two equations gives <math>\frac{7h}{2}+\frac{49}{4}=(\frac{151}{14}+r)^2-(\frac{100}{7}-r)^2=-\frac{17199}{196}+\frac{351r}{7}</math>, so <math>h=\frac{-200}{7}+\frac{702r}{49}</math>. Using the point to line distance formula, we find that <math>k=\frac{20r}{7}+\frac{h\sqrt{351}}{7}-\frac{51\sqrt{351}}{49}</math>. From internal tangency to <math>\Gamma_1</math>, <math>k^2=(\frac{100}{7}-r)^2-h^2</math>. Plugging the expressions for <math>h</math> and <math>k</math> yields that <math>r=\frac{1757}{702}</math>. It is in lowest terms, so <math>m+n=1757+402=\boxed{2459}</math>. | + | Place circle <math>\Gamma_1</math> with center <math>O_1=(0,0)</math> and radius <math>R_1</math> so that <math>\overline{AB}</math> is the diameter on the x-axis with <math>A=(-R_1,0)</math>, <math>B=(R_1,0)</math>. Then <math>C</math> lies at <math>(R_1-7,0)</math>. Let point D lie on <math>\Gamma_1</math> and let <math>BD=CD=10</math>. Then <math>(x-R_1)^2+y^2=100</math>, and <math>(X-(R_1-7))^2+y^2=100</math>. Subtracting gives <math>14x-14R_1+49=0</math>, so <math>x=R_1-3.5</math>. Then <math>(x-R_1)^2+y^2=100</math> means that <math>y^2=100-3.5^2=\frac{351}{4}</math>, so <math>D=(R_1-3.5,\frac{\sqrt{351}}{2})</math>. Since <math>D</math> lies on <math>\Gamma_1</math>, <math>x^2+y^2=R_1^2</math> means that <math>(R_1-3.5)^2+\frac{351}{4}=R_1^2</math>. Solving for <math>R_1</math> yields that <math>R_1=\frac{100}{7}</math>. Therefore, <math>C=(\frac{51}{7},0)</math> and <math>D=(\frac{151}{14},\frac{\sqrt{351}}{2})</math>. Since segment <math>\overline{AC}</math> is a diameter of <math>\Gamma_2</math>, knowing that <math>A=(\frac{-100}{7}, 0)</math> and <math>C=(\frac{51}{7},0)</math>, <math>AC=\frac{151}{7}</math>, so the center of <math>\Gamma_2</math> is the midpoint of <math>\overline{AC}</math>, which is <math>(-3.5,0)</math>, and it has radius <math>\frac{AC}{2}=\frac{151}{14}</math>. We then find that the equation of <math>CD</math> is <math>-\frac{\sqrt{351}}{7}x+y+\frac{\sqrt{351}*51}{49}=0</math>. To find the center of circle <math>\omega</math>, we can use the tangencies in the problem. Internal tangency to <math>\Gamma_1</math> and external tangency to <math>\Gamma_2</math> give <math>h^2+k^2=(R_1-r)^2=(\frac{100}{7}-r)^2</math> and <math>(h+3.5)^2+k^2=(R_2+r)^2=(\frac{151}{14}+r)^2</math>, where <math>h,k</math> are the coordinates of the center of circle <math>\omega</math> and <math>r</math> is the radius. Subtracting the two equations gives <math>\frac{7h}{2}+\frac{49}{4}=(\frac{151}{14}+r)^2-(\frac{100}{7}-r)^2=-\frac{17199}{196}+\frac{351r}{7}</math>, so <math>h=\frac{-200}{7}+\frac{702r}{49}</math>. Using the point to line distance formula, we find that <math>k=\frac{20r}{7}+\frac{h\sqrt{351}}{7}-\frac{51\sqrt{351}}{49}</math>. From internal tangency to <math>\Gamma_1</math>, <math>k^2=(\frac{100}{7}-r)^2-h^2</math>. Plugging the expressions for <math>h</math> and <math>k</math> yields that <math>r=\frac{1757}{702}</math>. It is in lowest terms, so <math>m+n=1757+402=\boxed{2459}</math>. |
==See Also== | ==See Also== | ||
{{iTest box|year=2006|num-b=37|num-a=39|ver=[[2006 iTest Problems/Problem U1|U1]] '''•''' [[2006 iTest Problems/Problem U2|U2]] '''•''' [[2006 iTest Problems/Problem U3|U3]] '''•''' [[2006 iTest Problems/Problem U4|U4]] '''•''' [[2006 iTest Problems/Problem U5|U5]] '''•''' [[2006 iTest Problems/Problem U6|U6]] '''•''' [[2006 iTest Problems/Problem U7|U7]] '''•''' [[2006 iTest Problems/Problem U8|U8]] '''•''' [[2006 iTest Problems/Problem U9|U9]] '''•''' [[2006 iTest Problems/Problem U10|U10]]}} | {{iTest box|year=2006|num-b=37|num-a=39|ver=[[2006 iTest Problems/Problem U1|U1]] '''•''' [[2006 iTest Problems/Problem U2|U2]] '''•''' [[2006 iTest Problems/Problem U3|U3]] '''•''' [[2006 iTest Problems/Problem U4|U4]] '''•''' [[2006 iTest Problems/Problem U5|U5]] '''•''' [[2006 iTest Problems/Problem U6|U6]] '''•''' [[2006 iTest Problems/Problem U7|U7]] '''•''' [[2006 iTest Problems/Problem U8|U8]] '''•''' [[2006 iTest Problems/Problem U9|U9]] '''•''' [[2006 iTest Problems/Problem U10|U10]]}} | ||
+ | |||
+ | [[Category: Intermediate Geometry Problems]] |
Latest revision as of 19:13, 13 October 2025
Problem
Segment is a diameter of circle
. Point
lies in the interior of segment
such that
, and
is a point on
such that
. Segment
is a diameter of the circle
. A third circle,
, is drawn internally tangent to
, externally tangent to
, and tangent to segment
. If
is centered on the opposite side of
as
, then the radius of
can be expressed as
, where
and
are relatively prime positive integers. Compute
.
Solution 1
Place circle with center
and radius
so that
is the diameter on the x-axis with
,
. Then
lies at
. Let point D lie on
and let
. Then
, and
. Subtracting gives
, so
. Then
means that
, so
. Since
lies on
,
means that
. Solving for
yields that
. Therefore,
and
. Since segment
is a diameter of
, knowing that
and
,
, so the center of
is the midpoint of
, which is
, and it has radius
. We then find that the equation of
is
. To find the center of circle
, we can use the tangencies in the problem. Internal tangency to
and external tangency to
give
and
, where
are the coordinates of the center of circle
and
is the radius. Subtracting the two equations gives
, so
. Using the point to line distance formula, we find that
. From internal tangency to
,
. Plugging the expressions for
and
yields that
. It is in lowest terms, so
.
See Also
2006 iTest (Problems, Answer Key) | ||
Preceded by: Problem 37 |
Followed by: Problem 39 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • U1 • U2 • U3 • U4 • U5 • U6 • U7 • U8 • U9 • U10 |