Difference between revisions of "2000 AMC 10 Problems/Problem 7"
(New page: <asy> draw((0,2)--(3.4,2)--(3.4,0)--(0,0)--cycle); draw((0,0)--(1.3,2)); draw((0,0)--(3.4,2)); dot((0,0)); dot((0,2)); dot((3.4,2)); dot((3.4,0)); dot((1.3,2)); label("$A$",(0,2),NW); labe...) |
|||
| (17 intermediate revisions by 10 users not shown) | |||
| Line 1: | Line 1: | ||
| + | ==Problem== | ||
| + | |||
| + | In rectangle <math>ABCD</math>, <math>AD=1</math>, <math>P</math> is on <math>\overline{AB}</math>, and <math>\overline{DB}</math> and <math>\overline{DP}</math> trisect <math>\angle ADC</math>. What is the perimeter of <math>\triangle BDP</math>? | ||
| + | |||
| + | <asy> | ||
| + | draw((0,2)--(3.4,2)--(3.4,0)--(0,0)--cycle); | ||
| + | draw((0,0)--(1.3,2)); | ||
| + | draw((0,0)--(3.4,2)); | ||
| + | dot((0,0)); | ||
| + | dot((0,2)); | ||
| + | dot((3.4,2)); | ||
| + | dot((3.4,0)); | ||
| + | dot((1.3,2)); | ||
| + | label("$A$",(0,2),NW); | ||
| + | label("$B$",(3.4,2),NE); | ||
| + | label("$C$",(3.4,0),SE); | ||
| + | label("$D$",(0,0),SW); | ||
| + | label("$P$",(1.3,2),N); | ||
| + | </asy> | ||
| + | |||
| + | <math>\textbf{(A)}\ 3+\frac{\sqrt{3}}{3} \qquad\textbf{(B)}\ 2+\frac{4\sqrt{3}}{3} \qquad\textbf{(C)}\ 2+2\sqrt{2} \qquad\textbf{(D)}\ \frac{3+3\sqrt{5}}{2} \qquad\textbf{(E)}\ 2+\frac{5\sqrt{3}}{3}</math> | ||
| + | |||
| + | ==Solution== | ||
| + | |||
<asy> | <asy> | ||
draw((0,2)--(3.4,2)--(3.4,0)--(0,0)--cycle); | draw((0,2)--(3.4,2)--(3.4,0)--(0,0)--cycle); | ||
| Line 13: | Line 37: | ||
label("$D$",(0,0),SW); | label("$D$",(0,0),SW); | ||
label("$P$",(1.3,2),N); | label("$P$",(1.3,2),N); | ||
| + | label("$1$",(0,1),W); | ||
| + | label("$2$",(1.7,1),SE); | ||
| + | label("$\frac{\sqrt{3}}{3}$",(0.65,2),N); | ||
| + | label("$\frac{2\sqrt{3}}{3}$",(0.85,1),NW); | ||
| + | label("$\frac{2\sqrt{3}}{3}$",(2.35,2),N); | ||
| + | label("$\sqrt{3}$",(1.7,0),S); | ||
| + | label("$2$",(3,1),W); | ||
</asy> | </asy> | ||
<math>AD=1</math>. | <math>AD=1</math>. | ||
| − | Since <math>\angle ADC</math> is trisected, <math>\angle ADP= \angle PDB= \angle BDC=30</math>. | + | Since <math>\angle ADC</math> is trisected, <math>\angle ADP= \angle PDB= \angle BDC=30^\circ</math>. |
| + | |||
| + | Thus, <math>PD=\frac{2\sqrt{3}}{3}</math> | ||
| − | |||
<math>DB=2</math> | <math>DB=2</math> | ||
| + | |||
<math>BP=\sqrt{3}-\frac{\sqrt{3}}{3}=\frac{2\sqrt{3}}{3}</math>. | <math>BP=\sqrt{3}-\frac{\sqrt{3}}{3}=\frac{2\sqrt{3}}{3}</math>. | ||
| − | Adding, <math>2+\frac{4\sqrt{3}}{3}</math>. | + | Adding, we get <math>\boxed{\textbf{(B) } 2+\frac{4\sqrt{3}}{3}}</math>. |
| + | |||
| + | == Solution 2 == | ||
| + | After computing <math>\overline{BP} = \frac{2\sqrt{3}}{3},</math> observe that triangle <math>\triangle BPD</math> is isosceles with <math>\angle DPB = \angle BPD.</math> Therefore, using <math>120 - 30 - 30</math> triangle properties, we see that the perimeter is just <math>(2+ \sqrt{3}) \cdot \frac{2\sqrt{3}}{3} = \boxed{\textbf{(B) } 2+\frac{4\sqrt{3}}{3}}.</math> | ||
| + | |||
| + | ~Sliced_Bread | ||
| + | |||
| + | ==Video Solution by Daily Dose of Math== | ||
| + | |||
| + | https://youtu.be/wITXxUtZj3E?si=KuLEI9SeOFZTw05Y | ||
| + | |||
| + | ~Thesmartgreekmathdude | ||
| + | |||
| + | ==See Also== | ||
| + | |||
| + | {{AMC10 box|year=2000|num-b=6|num-a=8}} | ||
| + | {{MAA Notice}} | ||
| + | |||
| + | [[Category:Introductory Geometry Problems]] | ||
Latest revision as of 23:40, 14 July 2024
Problem
In rectangle
,
,
is on
, and
and
trisect
. What is the perimeter of
?
Solution
.
Since
is trisected,
.
Thus,
.
Adding, we get
.
Solution 2
After computing
observe that triangle
is isosceles with
Therefore, using
triangle properties, we see that the perimeter is just
~Sliced_Bread
Video Solution by Daily Dose of Math
https://youtu.be/wITXxUtZj3E?si=KuLEI9SeOFZTw05Y
~Thesmartgreekmathdude
See Also
| 2000 AMC 10 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 6 |
Followed by Problem 8 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.