Difference between revisions of "2006 AMC 12A Problems/Problem 21"
m (→Solution) |
m (→Problem) |
||
| (7 intermediate revisions by 3 users not shown) | |||
| Line 2: | Line 2: | ||
Let | Let | ||
| − | |||
<math>S_1=\{(x,y)|\log_{10}(1+x^2+y^2)\le 1+\log_{10}(x+y)\}</math> | <math>S_1=\{(x,y)|\log_{10}(1+x^2+y^2)\le 1+\log_{10}(x+y)\}</math> | ||
| − | |||
and | and | ||
| − | |||
<math>S_2=\{(x,y)|\log_{10}(2+x^2+y^2)\le 2+\log_{10}(x+y)\}</math>. | <math>S_2=\{(x,y)|\log_{10}(2+x^2+y^2)\le 2+\log_{10}(x+y)\}</math>. | ||
| Line 15: | Line 12: | ||
== Solution == | == Solution == | ||
Looking at the constraints of <math>S_1</math>: | Looking at the constraints of <math>S_1</math>: | ||
| + | |||
| + | <math> x+y > 0 </math> | ||
<math>\log_{10}(1+x^2+y^2)\le 1+\log_{10}(x+y)</math> | <math>\log_{10}(1+x^2+y^2)\le 1+\log_{10}(x+y)</math> | ||
| Line 30: | Line 29: | ||
<math> (x-5)^2 + (y-5)^2 \le (7)^2 </math> | <math> (x-5)^2 + (y-5)^2 \le (7)^2 </math> | ||
| − | <math>S_1</math> is a circle with a radius of <math>7</math>. So, the area of <math>S_1</math> is <math>49\pi</math>. | + | <math>S_1</math> is a circle with a radius of <math>7</math>. So, the area of <math>S_1</math> is <math>49\pi </math>. |
Looking at the constraints of <math>S_2</math>: | Looking at the constraints of <math>S_2</math>: | ||
| + | |||
| + | <math> x+y > 0 </math> | ||
<math>\log_{10}(2+x^2+y^2)\le 2+\log_{10}(x+y)</math> | <math>\log_{10}(2+x^2+y^2)\le 2+\log_{10}(x+y)</math> | ||
| Line 48: | Line 49: | ||
<math> (x-50)^2 + (y-50)^2 \le (7\sqrt{102})^2 </math> | <math> (x-50)^2 + (y-50)^2 \le (7\sqrt{102})^2 </math> | ||
| − | <math>S_2</math> is a circle with a radius of <math>7\sqrt{102}</math>. So, the area of <math>S_2</math> is <math>4998\pi</math>. | + | <math>S_2</math> is a circle with a radius of <math>7\sqrt{102}</math>. So, the area of <math>S_2</math> is <math>4998\pi </math>. |
| − | So the desired ratio is <math> \frac{4998\pi}{49\pi} = 102 \Rightarrow E </math> | + | So the desired ratio is <math> \frac{4998\pi}{49\pi} = 102 \Rightarrow \boxed{E} </math>. |
== See also == | == See also == | ||
{{AMC12 box|year=2006|ab=A|num-b=20|num-a=22}} | {{AMC12 box|year=2006|ab=A|num-b=20|num-a=22}} | ||
| + | {{MAA Notice}} | ||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] | ||
| − | |||
| − | |||
Latest revision as of 16:35, 17 September 2023
Problem
Let
and
.
What is the ratio of the area of
to the area of
?
Solution
Looking at the constraints of
:
is a circle with a radius of
. So, the area of
is
.
Looking at the constraints of
:
is a circle with a radius of
. So, the area of
is
.
So the desired ratio is
.
See also
| 2006 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 20 |
Followed by Problem 22 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.