Difference between revisions of "2003 AMC 12A Problems/Problem 18"

(Solution)
m (Added duplicate notice at top)
 
(18 intermediate revisions by 11 users not shown)
Line 1: Line 1:
 +
{{duplicate|[[2003 AMC 12A Problems|2003 AMC 12A #18]] and [[2003 AMC 10A Problems|2003 AMC 10A #25]]}}
 
== Problem ==
 
== Problem ==
 
Let <math>n</math> be a <math>5</math>-digit number, and let <math>q</math> and <math>r</math> be the quotient and the remainder, respectively, when <math>n</math> is divided by <math>100</math>. For how many values of <math>n</math> is <math>q+r</math> divisible by <math>11</math>?  
 
Let <math>n</math> be a <math>5</math>-digit number, and let <math>q</math> and <math>r</math> be the quotient and the remainder, respectively, when <math>n</math> is divided by <math>100</math>. For how many values of <math>n</math> is <math>q+r</math> divisible by <math>11</math>?  
Line 4: Line 5:
 
<math> \mathrm{(A) \ } 8180\qquad \mathrm{(B) \ } 8181\qquad \mathrm{(C) \ } 8182\qquad \mathrm{(D) \ } 9000\qquad \mathrm{(E) \ } 9090 </math>
 
<math> \mathrm{(A) \ } 8180\qquad \mathrm{(B) \ } 8181\qquad \mathrm{(C) \ } 8182\qquad \mathrm{(D) \ } 9000\qquad \mathrm{(E) \ } 9090 </math>
  
== Solution ==
+
== Solution 1 ==
  
Solution 1:
 
 
 
When a <math>5</math>-digit number is divided by <math>100</math>, the first <math>3</math> digits become the quotient, <math>q</math>, and the last <math>2</math> digits become the remainder, <math>r</math>.  
 
When a <math>5</math>-digit number is divided by <math>100</math>, the first <math>3</math> digits become the quotient, <math>q</math>, and the last <math>2</math> digits become the remainder, <math>r</math>.  
  
 
Therefore, <math>q</math> can be any integer from <math>100</math> to <math>999</math> inclusive, and <math>r</math> can be any integer from <math>0</math> to <math>99</math> inclusive.  
 
Therefore, <math>q</math> can be any integer from <math>100</math> to <math>999</math> inclusive, and <math>r</math> can be any integer from <math>0</math> to <math>99</math> inclusive.  
  
For each of the <math>9\cdot10\cdot10=900</math> possible values of <math>q</math>, there are at least <math>\lfloor \frac{100}{11} \rfloor = 9</math> possible values of <math>r</math> such that <math>q+r \equiv 0\pmod{11}</math>.  
+
For each of the <math>9\cdot10\cdot10=900</math> possible values of <math>q</math>, there are at least <math>\left\lfloor \frac{100}{11} \right\rfloor = 9</math> possible values of <math>r</math> such that <math>q+r \equiv 0\pmod{11}</math>.  
  
Since there is <math>1</math> "extra" possible value of <math>r</math> that is congruent to <math>0\pmod{11}</math>, each of the <math>\lfloor \frac{900}{11} \rfloor = 81</math> values of <math>q</math> that are congruent to <math>0\pmod{11}</math> have <math>1</math> more possible value of <math>r</math> such that <math>q+r \equiv 0\pmod{11}</math>.  
+
Since there is <math>1</math> "extra" possible value of <math>r</math> that is congruent to <math>0\pmod{11}</math>, each of the <math>\left\lfloor \frac{900}{11} \right\rfloor = 81</math> values of <math>q</math> that are congruent to <math>0\pmod{11}</math> have <math>1</math> more possible value of <math>r</math> such that <math>q+r \equiv 0\pmod{11}</math>.  
  
Therefore, the number of possible values of <math>n</math> such that <math>q+r \equiv 0\pmod{11}</math> is <math>900\cdot9+81\cdot1=8181 \Rightarrow B</math>.
+
Therefore, the number of possible values of <math>n</math> such that <math>q+r \equiv 0\pmod{11}</math> is <math>900\cdot9+81\cdot1=8181 \Rightarrow\boxed{(B)} </math>.
  
Solution 2:
+
== Solution 2 ==
  
Let the 5 digit number be abcde, where a, b, c, d, and e are digits. Then q = abc, and r = de. Then the digits of q +r theoretically are a, then b+d, then c + e. If this is to be divisible by 11, we can use the divisibility check for 11 to say that a + c + e - b -d is divisible by 11. If we revert this again, but we want all the digits to be single digit, then we get abcde again. So if q + r is to be divisible by 11, then the number we started with, abcde, must also be divisible by 11. There are 90000 total possible values of abcde, of which 8181 of them are divisible by 11. So for those numbers q + r is divisible by 11, so we have 8181 (B).
+
Notice that <math>q+r\equiv0\pmod{11}\Rightarrow100q+r\equiv0\pmod{11}</math>. This means that any number whose quotient and remainder sum is divisible by 11 must also be divisible by 11. Therefore, there are <math>\frac{99990-10010}{11}+1=8181</math> possible values. The answer is <math>\boxed{\textbf{(B) }8181}</math>.
  
== See Also ==
+
== Solution 3 ==
*[[2003 AMC 12A Problems]]
+
Let <math>abcde</math> be the five digits of <math>n</math>. Then <math>q = abc</math> and <math>r = de</math>. By the divisibility rules of <math>11</math>, <math>q = a - b + c \pmod{11}</math> and <math>r = -d + e \pmod{11}</math>, so <math>q + r = a - b + c - d + e = abcde = n \pmod{11}</math>. Thus, <math>n</math> must be divisble by <math>11</math>. There are <math>\frac{99990 - 10010}{11} + 1 = 8181</math> five-digit multiples of <math>11</math>, so the answer is <math>\boxed{\textbf{(B) }8181}</math>.
*[[2003 AMC 12A/Problem 17|Previous Problem]]
+
==Video Solution 1==
*[[2003 AMC 12A/Problem 19|Next Problem]]
+
https://youtu.be/OpGHj-B0_hg?t=672
  
[[Category:Introductory Number Theory Problems]]
+
~IceMatrix
 +
 
 +
==See Also==
 +
{{AMC10 box|year=2003|ab=A|num-b=24|after=Last Question}}
 +
{{AMC12 box|year=2003|ab=A|num-b=17|num-a=19}}
 +
{{MAA Notice}}

Latest revision as of 19:02, 20 June 2025

The following problem is from both the 2003 AMC 12A #18 and 2003 AMC 10A #25, so both problems redirect to this page.

Problem

Let $n$ be a $5$-digit number, and let $q$ and $r$ be the quotient and the remainder, respectively, when $n$ is divided by $100$. For how many values of $n$ is $q+r$ divisible by $11$?

$\mathrm{(A) \ } 8180\qquad \mathrm{(B) \ } 8181\qquad \mathrm{(C) \ } 8182\qquad \mathrm{(D) \ } 9000\qquad \mathrm{(E) \ } 9090$

Solution 1

When a $5$-digit number is divided by $100$, the first $3$ digits become the quotient, $q$, and the last $2$ digits become the remainder, $r$.

Therefore, $q$ can be any integer from $100$ to $999$ inclusive, and $r$ can be any integer from $0$ to $99$ inclusive.

For each of the $9\cdot10\cdot10=900$ possible values of $q$, there are at least $\left\lfloor \frac{100}{11} \right\rfloor = 9$ possible values of $r$ such that $q+r \equiv 0\pmod{11}$.

Since there is $1$ "extra" possible value of $r$ that is congruent to $0\pmod{11}$, each of the $\left\lfloor \frac{900}{11} \right\rfloor = 81$ values of $q$ that are congruent to $0\pmod{11}$ have $1$ more possible value of $r$ such that $q+r \equiv 0\pmod{11}$.

Therefore, the number of possible values of $n$ such that $q+r \equiv 0\pmod{11}$ is $900\cdot9+81\cdot1=8181 \Rightarrow\boxed{(B)}$.

Solution 2

Notice that $q+r\equiv0\pmod{11}\Rightarrow100q+r\equiv0\pmod{11}$. This means that any number whose quotient and remainder sum is divisible by 11 must also be divisible by 11. Therefore, there are $\frac{99990-10010}{11}+1=8181$ possible values. The answer is $\boxed{\textbf{(B) }8181}$.

Solution 3

Let $abcde$ be the five digits of $n$. Then $q = abc$ and $r = de$. By the divisibility rules of $11$, $q = a - b + c \pmod{11}$ and $r = -d + e \pmod{11}$, so $q + r = a - b + c - d + e = abcde = n \pmod{11}$. Thus, $n$ must be divisble by $11$. There are $\frac{99990 - 10010}{11} + 1 = 8181$ five-digit multiples of $11$, so the answer is $\boxed{\textbf{(B) }8181}$.

Video Solution 1

https://youtu.be/OpGHj-B0_hg?t=672

~IceMatrix

See Also

2003 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2003 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png