Difference between revisions of "2006 AMC 10B Problems/Problem 2"

 
(2 intermediate revisions by 2 users not shown)
Line 4: Line 4:
 
<math> \mathrm{(A) \ } -72\qquad \mathrm{(B) \ } -27\qquad \mathrm{(C) \ } -24\qquad \mathrm{(D) \ } 24\qquad \mathrm{(E) \ } 72 </math>
 
<math> \mathrm{(A) \ } -72\qquad \mathrm{(B) \ } -27\qquad \mathrm{(C) \ } -24\qquad \mathrm{(D) \ } 24\qquad \mathrm{(E) \ } 72 </math>
  
== Solution ==
+
== Solution 1==
 
Since <math> x \spadesuit y = (x+y)(x-y) </math>:  
 
Since <math> x \spadesuit y = (x+y)(x-y) </math>:  
  
<math> 3 \spadesuit (4 \spadesuit 5) = 3 \spadesuit((4+5)(4-5)) =  3 \spadesuit (-9) = (3+(-9))(3-(-9)) = -72 \Rightarrow A</math>
+
<math> 3 \spadesuit (4 \spadesuit 5) = 3 \spadesuit((4+5)(4-5)) =  3 \spadesuit (-9) = (3+(-9))(3-(-9)) = \boxed{\textbf{(A)}-72}</math>
 +
== Solution 2 ==
 +
From [[difference of squares]], we have <math> x \spadesuit y = (x+y)(x-y) = x^2 - y^2</math>
  
 +
So:
 +
 +
<math>3 \spadesuit (4 \spadesuit 5) = 3 \spadesuit(4^2 - 5^2) = 3 \spadesuit (16 - 25) = 3 \spadesuit (-9)= (3^2) - (-9)^2 =  9 - 81 = \boxed{\textbf{(A)}-72}</math>
 +
 +
~anabel.disher
 
== See Also ==
 
== See Also ==
 
{{AMC10 box|year=2006|ab=B|num-b=1|num-a=3}}
 
{{AMC10 box|year=2006|ab=B|num-b=1|num-a=3}}

Latest revision as of 16:00, 10 April 2025

Problem

For real numbers $x$ and $y$, define $x \spadesuit y = (x+y)(x-y)$. What is $3 \spadesuit (4 \spadesuit 5)$?

$\mathrm{(A) \ } -72\qquad \mathrm{(B) \ } -27\qquad \mathrm{(C) \ } -24\qquad \mathrm{(D) \ } 24\qquad \mathrm{(E) \ } 72$

Solution 1

Since $x \spadesuit y = (x+y)(x-y)$:

$3 \spadesuit (4 \spadesuit 5) = 3 \spadesuit((4+5)(4-5)) =  3 \spadesuit (-9) = (3+(-9))(3-(-9)) = \boxed{\textbf{(A)}-72}$

Solution 2

From difference of squares, we have $x \spadesuit y = (x+y)(x-y) = x^2 - y^2$

So:

$3 \spadesuit (4 \spadesuit 5) = 3 \spadesuit(4^2 - 5^2) = 3 \spadesuit (16 - 25) = 3 \spadesuit (-9)= (3^2) - (-9)^2 =  9 - 81 = \boxed{\textbf{(A)}-72}$

~anabel.disher

See Also

2006 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png