Difference between revisions of "2012 AIME II Problems/Problem 6"
Jayevvms123 (talk | contribs) (→Solution 2) |
|||
(5 intermediate revisions by 4 users not shown) | |||
Line 16: | Line 16: | ||
To maximize this value, we must have that <math>z^2</math> is in the opposite direction of <math>1+2i</math>. The unit vector in the complex plane in the desired direction is <math>\frac{-1}{\sqrt{5}} + \frac{-2}{\sqrt{5}} i</math>. Furthermore, we know that the magnitude of <math>z^2</math> is <math>25</math>, because the magnitude of <math>z</math> is <math>5</math>. From this information, we can find that <math>z^2 = \sqrt{5} (-5 - 10i)</math> | To maximize this value, we must have that <math>z^2</math> is in the opposite direction of <math>1+2i</math>. The unit vector in the complex plane in the desired direction is <math>\frac{-1}{\sqrt{5}} + \frac{-2}{\sqrt{5}} i</math>. Furthermore, we know that the magnitude of <math>z^2</math> is <math>25</math>, because the magnitude of <math>z</math> is <math>5</math>. From this information, we can find that <math>z^2 = \sqrt{5} (-5 - 10i)</math> | ||
− | Squaring, we get <math>z^4 = 5 (25 - 100 + 100i) = -375 + 500i</math>. Finally, <math>c+d = -375 + 500 = 125</math> | + | Squaring, we get <math>z^4 = 5 (25 - 100 + 100i) = -375 + 500i</math>. Finally, <math>c+d = -375 + 500 = \boxed{125}</math> |
+ | |||
+ | == Solution 2 == | ||
+ | |||
+ | WLOG, let <math>z_{1}=5(\cos{\theta_{1}}+i\sin{\theta_{1}})</math> and | ||
+ | |||
+ | <math>z_{2}=1+2i=\sqrt{5}(\cos{\theta_{2}+i\sin{\theta_{2}}})</math> | ||
+ | |||
+ | This means that | ||
+ | |||
+ | <math>z_{1}^3=125(\cos{3\theta_{1}}+i\sin{3\theta_{1}})</math> | ||
+ | |||
+ | <math>z_{1}^4=625(\cos{4\theta_{1}}+i\sin{4\theta_{1}})</math> | ||
+ | |||
+ | Hence, this means that | ||
+ | |||
+ | <math>z_{2}z_{1}^3=125\sqrt{5}(\cos({\theta_{2}+3\theta_{1}})+i\sin({\theta_{2}+3\theta_{1}}))</math> | ||
+ | |||
+ | And | ||
+ | |||
+ | <math>z_{1}^5=3125(\cos{5\theta_{1}}+i\sin{5\theta_{1}})</math> | ||
+ | |||
+ | Now, common sense tells us that the distance between these two complex numbers is maxed when they both are points satisfying the equation of the line <math>yi=mx</math>, or when they are each a <math>180^{\circ}</math> rotation away from each other. | ||
+ | |||
+ | Hence, we must have that <math>5\theta_{1}=3\theta_{1}+\theta_{2}+180^{\circ}\implies\theta_{1}=\frac{\theta_{2}+180^{\circ}}{2}</math> | ||
+ | |||
+ | Now, plug this back into <math>z_{1}^4</math>(if you want to know why, reread what we want in the problem!) | ||
+ | |||
+ | So now, we have that | ||
+ | <math>z_{1}^4=625(\cos{2\theta_{2}}+i\sin{2\theta_{2}})</math> | ||
+ | |||
+ | Notice that <math>\cos\theta_{2}=\frac{1}{\sqrt{5}}</math> and <math>\sin\theta_{2}=\frac{2}{\sqrt{5}}</math> | ||
+ | |||
+ | Then, we have that <math>\cos{2\theta_{2}}=\cos^2{\theta_{2}}-\sin^2{\theta_{2}}=-\frac{3}{5}</math> and <math>\sin{2\theta_{2}}=2\sin{\theta_{2}}\cos{\theta_{2}}=\frac{4}{5}</math> | ||
+ | |||
+ | Finally, plugging back in, we find that <math>z_{1}^4=625(-\frac{3}{5}+\frac{4i}{5})=-375+500i</math> | ||
+ | |||
+ | <math>-375+500=\boxed{125}</math> | ||
+ | |||
+ | |||
+ | == Solution 3 == | ||
+ | |||
+ | Clearly, we want <math>\arg((1+2i)z^3) = \pi + \arg(z^5)</math>. This is equivalent to <math>\arg(1+2i) = \pi + 2 \arg(z)</math> by the additive property of the argument in complex multiplication. Because we want to find <math>z^4</math>, we want an expression for <math>\arg(z^4)</math>. We now have <math>2\arg(1+2i) = 2\pi + 4 \arg(z) \rightarrow \arg(-3+4i) = 4\arg(z)</math>. Thus, <math>z^4</math> is in the direction of <math>-3 + 4i</math>. To achieve a magnitude of 5^4, we need to multiple <math>-3+4i</math> by 125, so <math>z^4 = 125(-3+4i)</math> and the answer is thus <math>\boxed{125}</math>. | ||
== See Also == | == See Also == | ||
{{AIME box|year=2012|n=II|num-b=5|num-a=7}} | {{AIME box|year=2012|n=II|num-b=5|num-a=7}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 19:44, 20 July 2025
Problem 6
Let be the complex number with
and
such that the distance between
and
is maximized, and let
. Find
.
Solution
Let's consider the maximization constraint first: we want to maximize the value of
Simplifying, we have
Thus we only need to maximize the value of .
To maximize this value, we must have that is in the opposite direction of
. The unit vector in the complex plane in the desired direction is
. Furthermore, we know that the magnitude of
is
, because the magnitude of
is
. From this information, we can find that
Squaring, we get . Finally,
Solution 2
WLOG, let and
This means that
Hence, this means that
And
Now, common sense tells us that the distance between these two complex numbers is maxed when they both are points satisfying the equation of the line , or when they are each a
rotation away from each other.
Hence, we must have that
Now, plug this back into (if you want to know why, reread what we want in the problem!)
So now, we have that
Notice that and
Then, we have that and
Finally, plugging back in, we find that
Solution 3
Clearly, we want . This is equivalent to
by the additive property of the argument in complex multiplication. Because we want to find
, we want an expression for
. We now have
. Thus,
is in the direction of
. To achieve a magnitude of 5^4, we need to multiple
by 125, so
and the answer is thus
.
See Also
2012 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.