Difference between revisions of "1985 AHSME Problems/Problem 3"
J314andrews (talk | contribs) (Shrunk diagram because it was huge.) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | In right <math> \triangle ABC </math> with legs <math> 5 </math> and <math> 12 </math>, arcs of circles are drawn, one with center <math> A </math> and radius <math> 12 </math>, the other with center <math> B </math> and radius <math> 5 </math>. They intersect the | + | In right <math>\triangle ABC</math> with legs <math>5</math> and <math>12</math>, arcs of circles are drawn, one with center <math>A</math> and radius <math>12</math>, the other with center <math>B</math> and radius <math>5</math>. They intersect the hypotenuse in <math>M</math> and <math>N</math>. Then <math>MN</math> has length |
<asy> | <asy> | ||
defaultpen(linewidth(0.7)+fontsize(10)); | defaultpen(linewidth(0.7)+fontsize(10)); | ||
+ | unitsize(0.5 cm); | ||
pair A=origin, B=(12,7), C=(12,0), M=12*dir(A--B), N=B+B.y*dir(B--A); | pair A=origin, B=(12,7), C=(12,0), M=12*dir(A--B), N=B+B.y*dir(B--A); | ||
real r=degrees(B); | real r=degrees(B); | ||
Line 11: | Line 12: | ||
label("$B$", B, dir(point--B)); | label("$B$", B, dir(point--B)); | ||
label("$C$", C, dir(point--C)); | label("$C$", C, dir(point--C)); | ||
− | label("$M$", M, | + | label("$M$", M, NW); |
− | label("$N$", N, | + | label("$N$", N, NW); |
label("$12$", (6,0), S); | label("$12$", (6,0), S); | ||
label("$5$", (12,3.5), E);</asy> | label("$5$", (12,3.5), E);</asy> | ||
Line 19: | Line 20: | ||
==Solution== | ==Solution== | ||
− | + | Firstly, the Pythagorean theorem gives <cmath>\begin{align*}AB &=\sqrt{AC^2+BC^2} \\ &= \sqrt{12^2+5^2} \\ & =\sqrt{144+25} \\ &=\sqrt{169} \\ &= 13.\end{align*}</cmath> Also, <math>AM = AC = 12</math> and <math>BN = BC = 5</math> since they are both radii of the respective circles. Thus <math>MB = AB-AM = 13-12 = 1</math>, and so <math>MN = BN-BM = 5-1 = \boxed{\text{(D)} \ 4}</math>. | |
==See Also== | ==See Also== | ||
{{AHSME box|year=1985|num-b=2|num-a=4}} | {{AHSME box|year=1985|num-b=2|num-a=4}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 23:16, 3 July 2025
Problem
In right with legs
and
, arcs of circles are drawn, one with center
and radius
, the other with center
and radius
. They intersect the hypotenuse in
and
. Then
has length
Solution
Firstly, the Pythagorean theorem gives Also,
and
since they are both radii of the respective circles. Thus
, and so
.
See Also
1985 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.