Difference between revisions of "1989 AHSME Problems/Problem 29"
(5 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
What is the value of the sum <math>S=\sum_{k=0}^{49}(-1)^k\binom{99}{2k}=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98}?</math> | What is the value of the sum <math>S=\sum_{k=0}^{49}(-1)^k\binom{99}{2k}=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98}?</math> | ||
− | {{ | + | |
+ | <math> \textrm{(A)}\ -2^{50}\qquad\textrm{(B)}\ -2^{49}\qquad\textrm{(C)}\ 0\qquad\textrm{(D)}\ 2^{49}\qquad\textrm{(E)}\ 2^{50} </math> | ||
==Solution== | ==Solution== | ||
Line 13: | Line 14: | ||
So, <math>Re[(1+i)^{99}]=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98} = S</math>. | So, <math>Re[(1+i)^{99}]=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98} = S</math>. | ||
− | Using [[De Moivre's Theorem]], <math>(1+i)^{99}=[\sqrt{2}cis(45^\circ)]^{99}=\sqrt{2^{99}}\cdot cis(99\cdot45^\circ)=2^{49}\sqrt{2}\cdot cis(135^\circ) = -2^{49}+2^{49}i</math>. | + | Using [[De Moivre's Theorem]], <math>(1+i)^{99}=[\sqrt{2}\mathrm{cis}(45^\circ)]^{99}=\sqrt{2^{99}}\cdot \mathrm{cis}(99\cdot45^\circ)=2^{49}\sqrt{2}\cdot \mathrm{cis}(135^\circ) = -2^{49}+2^{49}i</math>. |
+ | |||
+ | And finally, <math>S=Re[-2^{49}+2^{49}i] = -2^{49}</math>. | ||
− | + | <math>\fbox{B}</math> | |
==See also== | ==See also== |
Latest revision as of 13:32, 29 July 2025
Problem
What is the value of the sum
Solution
By the Binomial Theorem,
.
Using the fact that ,
,
,
, and
, the sum becomes:
.
So, .
Using De Moivre's Theorem, .
And finally, .
See also
1989 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 28 |
Followed by Problem 30 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.