|
|
| (11 intermediate revisions by 8 users not shown) |
| Line 1: |
Line 1: |
| − | == Problem ==
| + | #redirect [[2006 AMC 12A Problems/Problem 14]] |
| − | Two farmers agree that pigs are worth $300 and that goats are worth $210. When one farmer owes the other money, he pays the debt in pigs or goats, with "change" received in the form of goats or pigs as necessary. (For example, a $390 debt could be paid with two pigs, with one goat received in change.) What is the amount of the smallest positive debt that can be resolved in this way?
| |
| − | | |
| − | <math>\mathrm{(A) \ } $5\qquad\mathrm{(B) \ } $10\qquad\mathrm{(C) \ } $30\qquad\mathrm{(D) \ } $90\qquad\mathrm{(E) \ } $210\qquad</math>
| |
| − | == Solution ==
| |
| − | == See also ==
| |
| − | *[[2006 AMC 10A Problems]]
| |