Difference between revisions of "2014 AMC 10B Problems/Problem 2"
(Created page with "==Problem== ==Solution== ==See Also== {{AMC10 box|year=2014|ab=B|before=num-b=1|num-a=3}} {{MAA Notice}}") |
(→Video Solution) |
||
| (41 intermediate revisions by 10 users not shown) | |||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
| + | What is <math>\frac{2^3 + 2^3}{2^{-3} + 2^{-3}}</math>? | ||
| − | ==Solution== | + | <math> \textbf {(A) } 16 \qquad \textbf {(B) } 24 \qquad \textbf {(C) } 32 \qquad \textbf {(D) } 48 \qquad \textbf {(E) } 64 </math> |
| + | |||
| + | ==Solution 1== | ||
| + | We can synchronously multiply <math> {2^3} </math> to the expresions both above and below the fraction bar. Thus, | ||
| + | <cmath>\frac{2^3+2^3}{2^{-3}+2^{-3}}\\=\frac{2^6+2^6}{1+1}\\={2^6}. </cmath> | ||
| + | Hence, the fraction equals to <math>\boxed{{\textbf{(E) }64}}</math>. | ||
| + | |||
| + | ==Solution 2== | ||
| + | We have | ||
| + | <cmath>\frac{2^3+2^3}{2^{-3}+2^{-3}} = \frac{8 + 8}{\frac{1}{8} + \frac{1}{8}} = \frac{16}{\frac{1}{4}} = 16 \cdot 4 = 64,</cmath> so our answer is <math>\boxed{{(\textbf{E) }64}}</math>. | ||
| + | |||
| + | ==Video Solution (CREATIVE THINKING)== | ||
| + | https://youtu.be/NwWf1uYFZqw | ||
| + | |||
| + | ~Education, the Study of Everything | ||
| + | |||
| + | |||
| + | |||
| + | ==Video Solution== | ||
| + | https://youtu.be/vLFULrT_7yk | ||
| + | |||
| + | ~savannahsolver | ||
==See Also== | ==See Also== | ||
| − | {{AMC10 box|year=2014|ab=B| | + | {{AMC10 box|year=2014|ab=B|num-b=1|num-a=3}} |
{{MAA Notice}} | {{MAA Notice}} | ||
Latest revision as of 11:05, 2 July 2023
Contents
Problem
What is
?
Solution 1
We can synchronously multiply
to the expresions both above and below the fraction bar. Thus,
Hence, the fraction equals to
.
Solution 2
We have
so our answer is
.
Video Solution (CREATIVE THINKING)
~Education, the Study of Everything
Video Solution
~savannahsolver
See Also
| 2014 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 1 |
Followed by Problem 3 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.