Difference between revisions of "Additive Inverse"

(Created page with "In mathematics, the additive inverse of a number a is the number that, when added to a, yields zero. This operation is also known as the opposite (number), sign change, and negat...")
 
(Propose for deletion)
(Tag: New redirect)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In mathematics, the additive inverse of a number a is the number that, when added to a, yields zero. This operation is also known as the opposite (number), sign change, and negation.[1] For a real number, it reverses its sign: the opposite to a positive number is negative, and the opposite to a negative number is positive. Zero is the additive inverse of itself.
+
#REDIRECT [[Additive inverse]]
 +
 
 +
{{delete|housekeeping}}
 +
 
 +
== Overview ==
 +
In mathematics, the additive inverse of a number a is the number that, when added to a yields zero. This operation is also known as the opposite (number), sign change, and negation.[1] For a real number, it reverses its sign: the opposite of a positive number is negative, and the opposite to a negative number is positive. Zero is the additive inverse of itself.
  
 
The additive inverse of a is denoted by unary minus: −a (see the discussion below). For example, the additive inverse of 7 is −7, because 7 + (−7) = 0, and the additive inverse of −0.3 is 0.3, because −0.3 + 0.3 = 0 .
 
The additive inverse of a is denoted by unary minus: −a (see the discussion below). For example, the additive inverse of 7 is −7, because 7 + (−7) = 0, and the additive inverse of −0.3 is 0.3, because −0.3 + 0.3 = 0 .
  
The additive inverse is defined as its inverse element under the binary operation of addition (see the discussion below), which allows a broad generalization to mathematical objects other than numbers. As for any inverse operation, double additive inverse has no effect: −(−x) = x.
+
The additive inverse is defined as its inverse element under the binary operation of addition (see the discussion below), which allows a broad generalization to mathematical objects other than numbers. As for any inverse operation, the double additive inverse has no effect: −(−x) = x.

Latest revision as of 19:25, 23 July 2025

Redirect to:

This page has been proposed for deletion. Reason: housekeeping


Note to sysops: Before deleting, please review: • What links hereDiscussion pageEdit history


Overview

In mathematics, the additive inverse of a number a is the number that, when added to a yields zero. This operation is also known as the opposite (number), sign change, and negation.[1] For a real number, it reverses its sign: the opposite of a positive number is negative, and the opposite to a negative number is positive. Zero is the additive inverse of itself.

The additive inverse of a is denoted by unary minus: −a (see the discussion below). For example, the additive inverse of 7 is −7, because 7 + (−7) = 0, and the additive inverse of −0.3 is 0.3, because −0.3 + 0.3 = 0 .

The additive inverse is defined as its inverse element under the binary operation of addition (see the discussion below), which allows a broad generalization to mathematical objects other than numbers. As for any inverse operation, the double additive inverse has no effect: −(−x) = x.