Difference between revisions of "1980 AHSME Problems/Problem 22"
(Created page with "== Problem == For each real number <math>x</math>, let <math>f(x)</math> be the minimum of the numbers <math>4x+1, x+2</math>, and <math>-2x+4</math>. Then the maximum value of ...") |
J314andrews (talk | contribs) m (→Solution) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
− | <math>\ | + | Let <math>a(x) = 4x+1</math>, <math>b(x) = x+2</math>, and <math>c(x) = -2x+4</math>. Then <math>f(x) = \min(a(x), b(x), c(x))</math>. |
+ | |||
+ | <math>a(x) - b(x) = 3x - 1</math>, so <math>a(x) > b(x)</math> when <math>x > \frac{1}{3}</math>, <math>a(x) = b(x)</math> when <math>x = \frac{1}{3}</math>, and <math>a(x) < b(x)</math> when <math>x < \frac{1}{3}</math>. | ||
+ | |||
+ | <math>a(x) - c(x) = 6x - 3</math>, so <math>a(x) > c(x)</math> when <math>x > \frac{1}{2}</math>, <math>a(x) = c(x)</math> when <math>x = \frac{1}{2}</math>, and <math>a(x) < c(x)</math> when <math>x < \frac{1}{2}</math>. | ||
+ | |||
+ | <math>b(x) - c(x) = 3x - 2</math>, so <math>b(x) > c(x)</math> when <math>x > \frac{2}{3}</math>, <math>b(x) = c(x)</math> when <math>x = \frac{2}{3}</math>, and <math>b(x) < c(x)</math> when <math>x < \frac{2}{3}</math>. | ||
+ | |||
+ | If <math>x \leq \frac{1}{3}</math>, <math>a(x) \leq b(x) < c(x)</math>, so <math>f(x) = a(x) = 4x+1</math>. | ||
+ | |||
+ | If <math>\frac{1}{3} \leq x \leq \frac{1}{2}</math>, <math>b(x) \leq a(x) \leq c(x)</math>, so <math>f(x) = b(x) = x+2</math>. | ||
+ | |||
+ | If <math>\frac{1}{2} \leq x \leq \frac{2}{3}</math>, <math>b(x) \leq c(x) \leq a(x)</math>, so <math>f(x) = b(x) = x+2</math>. | ||
+ | |||
+ | If <math>x \geq \frac{2}{3}</math>, <math>c(x) \leq b(x) < a(x)</math>, so <math>f(x) = c(x) = -2x+4</math>. | ||
+ | |||
+ | So <math>f(x) </math> is increasing while <math>x < \frac{2}{3}</math> and decreasing while <math>x > \frac{2}{3}</math>, and therefore, <math>f(x)</math> is maximized at <math>x = \frac{2}{3}</math>, with a value of <math>f\left(\frac{2}{3}\right) = \frac{2}{3} + 2 = \boxed{(\textbf{E})\ \frac{8}{3}}</math> | ||
== See also == | == See also == |
Latest revision as of 14:28, 16 August 2025
Problem
For each real number , let
be the minimum of the numbers
, and
. Then the maximum value of
is
Solution
Let ,
, and
. Then
.
, so
when
,
when
, and
when
.
, so
when
,
when
, and
when
.
, so
when
,
when
, and
when
.
If ,
, so
.
If ,
, so
.
If ,
, so
.
If ,
, so
.
So is increasing while
and decreasing while
, and therefore,
is maximized at
, with a value of
See also
1980 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.