Difference between revisions of "1977 Canadian MO Problems/Problem 6"
(Created page with "== Problem == Let <math>0<u<1</math> and define <cmath>u_1=1+u\quad ,\quad u_2=\frac{1}{u_1}+u\quad \ldots\quad u_{n+1}=\frac{1}{u_n}+u\quad ,\quad n\ge 1</cmath> Show that ...") |
(→Solution) |
||
Line 7: | Line 7: | ||
== Solution == | == Solution == | ||
+ | Prove by induction that <math>\forall i>1</math> <math>1<u_i<\frac{1}{1-u}</math> | ||
+ | |||
+ | <math>u_1=1+k</math> that <math>1<u_1</math> and <math>1+u<\frac{1}{1-u} \to 1-u^2<1 \to -u^2<0</math>. | ||
+ | |||
+ | By induction if <math>u_i<\frac{1}{1-u}</math> then <math>u_{i+1}=\frac{1}{u_i}+u>(1-u)+u=1 \to u_{i+1}>1</math> and if <math>u_i>1</math> then <math>u_i>1>1-\frac{u^2}{1-u+u^2}=\frac{1-u}{1-u+u^2}</math> (<math>\frac{u^2}{1-u+u^2}>0</math> because <math>u^2>0</math> and <math>1-u+u^2>1-u>0</math> because <math>1>u</math>). | ||
+ | |||
+ | So <math>u_{i+1}=\frac{1}{u_i}+u</math> and so <math>u_{i+1}<\frac{1-u+u^2}{1-u}+u=\frac{1}{1-u} \to u_{i+1}<\frac{1}{1-u}</math> | ||
+ | |||
+ | So <math>1<u_{i+1}<\frac{1}{1-u}</math>, and in particular <math>u_{i+1}>1 \forall</math> <math>i\geq 1</math> |
Latest revision as of 08:18, 13 April 2025
Problem
Let and define
Show that
for all values of
.
Solution
Prove by induction that
that
and
.
By induction if then
and if
then
(
because
and
because
).
So and so
So , and in particular