Difference between revisions of "2008 AMC 12B Problems/Problem 12"

(Alternate Solution)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==Problem 12==
+
==Problem==
 
For each positive integer <math>n</math>, the mean of the first <math>n</math> terms of a sequence is <math>n</math>. What is the <math>2008</math>th term of the sequence?
 
For each positive integer <math>n</math>, the mean of the first <math>n</math> terms of a sequence is <math>n</math>. What is the <math>2008</math>th term of the sequence?
  
 
<math>\textbf{(A)}\ 2008 \qquad \textbf{(B)}\ 4015 \qquad \textbf{(C)}\ 4016 \qquad \textbf{(D)}\ 4030056 \qquad \textbf{(E)}\ 4032064</math>
 
<math>\textbf{(A)}\ 2008 \qquad \textbf{(B)}\ 4015 \qquad \textbf{(C)}\ 4016 \qquad \textbf{(D)}\ 4030056 \qquad \textbf{(E)}\ 4032064</math>
  
==Solution==
+
==Solution 1==
 
Letting <math>S_n</math> be the nth partial sum of the sequence:
 
Letting <math>S_n</math> be the nth partial sum of the sequence:
  
Line 18: Line 18:
  
  
==Alternate Solution==
+
==Solution 2==
  
 
Letting the sum of the sequence equal <math>a_1+a_2+\cdots+a_n</math> yields the following two equations:
 
Letting the sum of the sequence equal <math>a_1+a_2+\cdots+a_n</math> yields the following two equations:
Line 26: Line 26:
 
<math>\frac{a_1+a_2+\cdots+a_{2007}}{2007}=2007</math>.
 
<math>\frac{a_1+a_2+\cdots+a_{2007}}{2007}=2007</math>.
  
So then:
+
Therefore:
  
 
<math>a_1+a_2+\cdots+a_{2008}=2008^2</math> and <math>a_1+a_2+\cdots+a_{2007}=2007^2</math>
 
<math>a_1+a_2+\cdots+a_{2008}=2008^2</math> and <math>a_1+a_2+\cdots+a_{2007}=2007^2</math>
  
Therefore, by substitution, <math>a_{2008}=2008^2-2007^2=(2008+2007)(2008-2007)=4015(1)=4015\implies\boxed{B}</math>
+
Hence, by substitution, <math>a_{2008}=2008^2-2007^2=(2008+2007)(2008-2007)=4015(1)=4015\implies\boxed{\textbf{B}}</math>
  
(Solution by Bob_Smith)
+
==Solution 3==
 +
Since the mean will be the sum of the first <math>n</math> terms divided by <math>n</math>, and said mean also equals <math>n</math>, we know that the sum must be <math>n^2</math>. This means the sequence must compute squares, and this is done by the odd integer sequence <math>1+3+5+7+\ldots</math>. Therefore, we must find the 2008th odd number, which is found by <math>2n-1 \implies 2(2008)-1 = 4015</math>, so the answer is <math>\boxed{\textbf{B}}</math>
 +
~stress-couture
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2008|ab=B|num-b=11|num-a=13}}
 
{{AMC12 box|year=2008|ab=B|num-b=11|num-a=13}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 13:05, 21 May 2025

Problem

For each positive integer $n$, the mean of the first $n$ terms of a sequence is $n$. What is the $2008$th term of the sequence?

$\textbf{(A)}\ 2008 \qquad \textbf{(B)}\ 4015 \qquad \textbf{(C)}\ 4016 \qquad \textbf{(D)}\ 4030056 \qquad \textbf{(E)}\ 4032064$

Solution 1

Letting $S_n$ be the nth partial sum of the sequence:

$\frac{S_n}{n} = n$

$S_n = n^2$

The only possible sequence with this result is the sequence of odd integers.

$a_n = 2n - 1$

$a_{2008} = 2(2008) - 1 = 4015 \Rightarrow \textbf{(B)}$


Solution 2

Letting the sum of the sequence equal $a_1+a_2+\cdots+a_n$ yields the following two equations:

$\frac{a_1+a_2+\cdots+a_{2008}}{2008}=2008$ and

$\frac{a_1+a_2+\cdots+a_{2007}}{2007}=2007$.

Therefore:

$a_1+a_2+\cdots+a_{2008}=2008^2$ and $a_1+a_2+\cdots+a_{2007}=2007^2$

Hence, by substitution, $a_{2008}=2008^2-2007^2=(2008+2007)(2008-2007)=4015(1)=4015\implies\boxed{\textbf{B}}$

Solution 3

Since the mean will be the sum of the first $n$ terms divided by $n$, and said mean also equals $n$, we know that the sum must be $n^2$. This means the sequence must compute squares, and this is done by the odd integer sequence $1+3+5+7+\ldots$. Therefore, we must find the 2008th odd number, which is found by $2n-1 \implies 2(2008)-1 = 4015$, so the answer is $\boxed{\textbf{B}}$ ~stress-couture

See Also

2008 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png