|
|
| (6 intermediate revisions by one other user not shown) |
| Line 1: |
Line 1: |
| − | ==Problem==
| + | #REDIRECT [[2016_AMC_10A_Problems/Problem_24]] |
| − | A quadrilateral is inscribed in a circle of radius <math>200\sqrt{2}.</math> Three of the sides of this quadrilateral have length <math>200.</math> What is the length of its fourth side?
| |
| − | | |
| − | <math>\textbf{(A)}\ 200\qquad\textbf{(B)}\ 200\sqrt{2} \qquad\textbf{(C)}\ 200\sqrt{3} \qquad\textbf{(D)}\ 300\sqrt{2} \qquad\textbf{(E)}\ 500</math>
| |
| − | ==Solution==
| |
| − | | |
| − | <asy>
| |
| − | pathpen = black; pointpen = black;
| |
| − | size(6cm);
| |
| − | draw(unitcircle);
| |
| − | pair A = D("A", dir(50), dir(50));
| |
| − | pair B = D("B", dir(90), dir(90));
| |
| − | pair C = D("C", dir(130), dir(130));
| |
| − | pair D = D("D", dir(170), dir(170));
| |
| − | pair O = D("O", (0,0), dir(-90));
| |
| − | draw(A--C, red);
| |
| − | draw(B--D, blue+dashed);
| |
| − | draw(A--B--C--D--cycle);
| |
| − | draw(A--O--C);
| |
| − | draw(O--B);
| |
| − | </asy>
| |
| − | | |
| − | Let <math>s = 200</math>. Let <math>O</math> be the center of the circle. Then <math>AC</math> is twice the altitude of <math>\triangle OBC</math>. Since <math>\triangle OBC</math> is isosceles we can compute its area to be <math>s^2 \sqrt7/4</math>, hence <math>CA = 2 \tfrac{2 \cdot s^2\sqrt7/4}{s\sqrt2} = s\sqrt{7/2}</math>.
| |
| − | | |
| − | Now by Ptolemy's Theorem we have <math>CA^2 = s^2 + AD \cdot s \implies AD = (7/2-1)s = 500</math>.
| |