Difference between revisions of "2013 AMC 10B Problems/Problem 25"

(Shortcut)
m (Solution 3)
 
(129 intermediate revisions by 23 users not shown)
Line 7: Line 7:
 
<math> \textbf{(A)}\ 5 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}\ 20 \qquad\textbf{(E)}\ 25</math>
 
<math> \textbf{(A)}\ 5 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}\ 20 \qquad\textbf{(E)}\ 25</math>
  
==Solution==
+
==Solution 1==
 
First, we can examine the units digits of the number base 5 and base 6 and eliminate some possibilities.
 
First, we can examine the units digits of the number base 5 and base 6 and eliminate some possibilities.
  
Line 14: Line 14:
 
also that <math>N \equiv b \pmod{5}</math>
 
also that <math>N \equiv b \pmod{5}</math>
  
Substituting these equations into the question and setting the units digits of 2N and S equal to each other, it can be seen that <math>a=b</math>, and <math>b < 5</math>, (otherwise <math>a</math> and <math>b</math> always have different parities) so
+
Substituting these equations into the question and setting the units digits of <math>2N</math> and <math>S</math> equal to each other, it can be seen that <math>b < 5</math> (because otherwise <math>a</math> and <math>b</math> will have different parities), and thus <math>a=b</math>.
 
<math>N \equiv a \pmod{6}</math>,
 
<math>N \equiv a \pmod{6}</math>,
 
<math>N \equiv  a \pmod{5}</math>,
 
<math>N \equiv  a \pmod{5}</math>,
Line 23: Line 23:
 
and <math>2N</math> can be written as <math>60x+2y</math>
 
and <math>2N</math> can be written as <math>60x+2y</math>
  
Keep in mind that <math>y</math> can be one of five choices: <math>0, 1, 2, 3,</math> or <math>4</math>, ;
+
Just keep in mind that <math>y</math> can be one of five choices: <math>0, 1, 2, 3,</math> or <math>4</math>, ;
 
Also, we have already found which digits of <math>y</math> will add up into the units digits of <math>2N</math>.
 
Also, we have already found which digits of <math>y</math> will add up into the units digits of <math>2N</math>.
  
 
Now, examine the tens digit, <math>x</math> by using <math>\mod{25}</math> and <math>\mod{36}</math> to find the tens digit (units digits can be disregarded because <math>y=0,1,2,3,4</math> will always work)
 
Now, examine the tens digit, <math>x</math> by using <math>\mod{25}</math> and <math>\mod{36}</math> to find the tens digit (units digits can be disregarded because <math>y=0,1,2,3,4</math> will always work)
Then we see that <math>N=30x+y</math> and take it <math>\mod{25}</math> and <math>\mod{36}</math> to find the last two digits in the base <math>5</math> and <math>6</math> representation.
+
Then we take <math>N=30x+y</math> <math>\mod{25}</math> and <math>\mod{36}</math> to find the last two digits in the base <math>5</math> and <math>6</math> representation.
 
<cmath>N \equiv 30x \pmod{36}</cmath>
 
<cmath>N \equiv 30x \pmod{36}</cmath>
 
<cmath>N \equiv 30x \equiv 5x \pmod{25}</cmath>  
 
<cmath>N \equiv 30x \equiv 5x \pmod{25}</cmath>  
Line 36: Line 36:
  
 
Now, since <math>y=0,1,2,3,4</math> will always work if <math>x</math> works, then we can treat <math>x</math> as a units digit instead of a tens digit in the respective bases and decrease the mods so that <math>x</math> is now the units digit.
 
Now, since <math>y=0,1,2,3,4</math> will always work if <math>x</math> works, then we can treat <math>x</math> as a units digit instead of a tens digit in the respective bases and decrease the mods so that <math>x</math> is now the units digit.
 +
<cmath>N \equiv 5x \pmod{6}</cmath>
 
<cmath>N \equiv 6x \equiv x \pmod{5}</cmath>  
 
<cmath>N \equiv 6x \equiv x \pmod{5}</cmath>  
<cmath>N \equiv 5x \pmod{6}</cmath>
 
 
<cmath>2N\equiv 6x \pmod{10}</cmath>
 
<cmath>2N\equiv 6x \pmod{10}</cmath>
  
Line 53: Line 53:
 
<cmath>2N\equiv 6n \pmod{10}</cmath>
 
<cmath>2N\equiv 6n \pmod{10}</cmath>
  
From inspection, when
+
From careful inspection, this is true when
  
 
<math>n=0, m=6</math>
 
<math>n=0, m=6</math>
Line 68: Line 68:
 
<math>5* 5 = \boxed{\textbf{(E) }25}</math>
 
<math>5* 5 = \boxed{\textbf{(E) }25}</math>
  
==Shortcut==
+
==Solution 2==
Notice that there are exactly <math>1000-100=900=5^2\cdot 6^2</math> possible values of <math>n</math>. This means, from <math>100\le n\le 999</math>, every possible combination of <math>2</math> digits will happen exactly once. We know that <math>n=900,901,902,903,904</math> works because <math>900\cong\dots00_5\cong\dots00_6</math>.
+
Notice that there are exactly <math>1000-100=900=5^2\cdot 6^2</math> possible values of <math>N</math>. This means, in <math>100\le N\le 999</math>, every possible combination of <math>2</math> digits will happen exactly once. We know that <math>N=900,901,902,903,904</math> work because <math>900\equiv\dots00_5\equiv\dots00_6</math>.
 +
 
 +
We know for sure that the units digit will add perfectly every <math>30</math> added or subtracted, because <math>\text{lcm }(5, 6)=30</math>. So we only have to care about cases of <math>N</math> every <math>30</math> subtracted. In each case, <math>2N</math> subtracts <math>6</math>/adds <math>4</math>, <math>N_5</math> subtracts <math>1</math> and <math>N_6</math> adds <math>1</math> for the <math>10</math>'s digit.
 +
 
 +
<cmath>\textbf{5 }\textcolor{red}{\text{ 0}}\text{ 4 3 2 1 0 }\textcolor{red}{\text{4}}\text{ 3 2 1 0 4 3 2 1 0 4 }\textcolor{red}{\text{3 2}}\text{ 1 0 4 3 2 1 0 4 3 2 }\textcolor{red}{\text{1}}</cmath>
  
We know for sure that the units digit will add perfectly every <math>30</math> added or subtracted, because <math>\text{lcm }5,6=30</math>. So we only have to care about cases of <math>n</math> every <math>30</math> subtracted. In each case, <math>2n</math> subtracts <math>6</math>/adds <math>4</math>, <math>n_5</math> subtracts <math>1</math> and <math>n_6</math> adds <math>1</math>.
+
<cmath>\textbf{6 }\textcolor{red}{\text{ 0}}\text{ 1 2 3 4 5 }\textcolor{red}{\text{0}}\text{ 1 2 3 4 5 0 1 2 3 4 }\textcolor{red}{\text{5 0}}\text{ 1 2 3 4 5 0 1 2 3 4 }\textcolor{red}{\text{5}}</cmath>
  
\begin{tabular}{c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c }
+
<cmath>\textbf{10}\textcolor{red}{\text{ 0}}\text{ 4 8 2 6 0 }\textcolor{red}{\text{4}}\text{ 8 2 6 0 4 8 2 6 0 4 }\textcolor{red}{\text{8 2}}\text{ 6 0 4 8 2 6 0 4 8 2 }\textcolor{red}{\text{6}}</cmath>
<math>\textbf{5}</math> & 0 & 4 & 3 & 2 & 1 & 0 & <math>\textcolor{red}{4}</math> & 3 & 2 & 1 & 0 & 4 & 3 & 2 & 1 & 0 & 4 & <math>\textcolor{red}{3}</math> & <math>\textcolor{red}{2}</math> & 1 & 0 & 4 & 3 & 2 & 1 & 0 & 4 & 3 & 2 & <math>\textcolor{red}{1}</math> \\ 
 
<math>\textbf{6}</math> & 0 & 1 & 2 & 3 & 4 & 5 & <math>\textcolor{red}{0}</math> & 1 & 2 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 4 & <math>\textcolor{red}{5}</math> & <math>\textcolor{red}{0}</math> & 1 & 2 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 4 & <math>\textcolor{red}{5}</math> \\
 
<math>\textbf{10}</math> & 0 & 4 & 8 & 2 & 6 & 0 & <math>\textcolor{red}{4}</math> & 8 & 2 & 6 & 0 & 4 & 8 & 2 & 6 & 0 & 4 & <math>\textcolor{red}{8}</math> & <math>\textcolor{red}{2}</math> & 6 & 0 & 4 & 8 & 2 & 6 & 0 & 4 & 8 & 2 & <math>\textcolor{red}{6}</math> \\
 
\end{tabular}
 
  
 
As we can see, there are <math>5</math> cases, including the original, that work. These are highlighted in <math>\textcolor{red}{\text{red}}</math>. So, thus, there are <math>5</math> possibilities for each case, and <math>5\cdot 5=\boxed{\textbf{(E) }25}</math>.
 
As we can see, there are <math>5</math> cases, including the original, that work. These are highlighted in <math>\textcolor{red}{\text{red}}</math>. So, thus, there are <math>5</math> possibilities for each case, and <math>5\cdot 5=\boxed{\textbf{(E) }25}</math>.
  
== See also ==
+
== Solution 3 ==
 +
 
 +
Notice that <math>N_5</math> ranges from <math>3</math> to <math>5</math> digits and <math>N_6</math> ranges from <math>3</math> to <math>4</math> digits.
 +
 
 +
So we can let <math>N_5 = a_1b_1c_1d_1e_1</math> and <math>N_6 = a_2b_2c_2d_2</math>. <cmath>S = 10000a_1 + 1000(b_1 + a_2) + 100(c_1 + b_2) + 10(d_1 + c_2) + e_1 + d_2.</cmath> To make it easier to work with mod 100, we will let <math>N = 625a_1 + 125b_1 + 25c_1 + 5d_1 + e_1</math> here. So we have:
 +
 
 +
<cmath>2N \equiv S \pmod{100} \implies 2(625a_1 + 125b_1 + 25c_1 + 5d_1 + e_1) \equiv 10(d_1 + c_2) + e_1 + d_2 \pmod{100}.</cmath>
 +
 
 +
<cmath>50(a_1 + b_1 + c_1) + \cancel{10d_1} + 2e_1 \equiv \cancel{10d_1} + 10c_2 + e_1 + d_2 \pmod{100}.</cmath>
 +
 
 +
<cmath>50(a_1 + b_1 + c_1) + e_1 \equiv 10c_2 + d_2 \pmod{100}.</cmath>
 +
 
 +
Now note that <math>50(a_1 + b_1 + c_1)</math> and <math>10c_2</math> will always end with zeros, so the only way for this expression to be true is if <math>e_1 = d_2.</math>
 +
 
 +
<cmath>50(a_1 + b_1 + c_1) + \cancel{e_1} \equiv 10c_2 + \cancel{d_2} \pmod{100}</cmath>
 +
 
 +
<cmath>5(a_1 + b_1 + c_1) \equiv c_2 \pmod{10}.</cmath>
 +
 
 +
So <math>c_2</math> can either be <math>0</math> or <math>5</math>.
 +
 
 +
Now we can express <math>N</math> in its base-six and base-five forms and set them equal to each other:
 +
 
 +
<cmath>625a_1 + 125b_1 + 25c_1 + 5d_1 + \cancel{d_2} = 216a_2 + 36b_2 + 6c_2 + \cancel{d_2}</cmath>
 +
 
 +
<cmath>5(125a_1 + 25b_1 + 5c_1 + d_1) = 6c_2 + 36(b_2 + 6a_2).</cmath>
 +
 
 +
Since we established <math>5 \mid c_2</math> (remember, <math>c_2</math> can either be <math>0</math> or <math>5</math>), for the right hand side to be a multiple of <math>5</math>, <math>5 \mid b_2 + 6a_2.</math> So we have seven possible pairs for <math>a_2</math> and <math>b_2</math>:
 +
 
 +
<cmath>(a_2, b_2) \rightarrow (5,0), (4,1), (3,2), (2,3), (1,4), (0, 5), (0,0).</cmath> But if we had <math>(0,0),</math> then <math>N_6</math> would only have two digits, and <math>N</math> would not be a three digit number. And if we had <math>a_2 = 5,</math> then <math>N</math> would exceed <math>1000</math> and also not be a three digit number. So we actually have five valid pairs: <math>(4,1), (3,2), (2,3), (1,4), (0, 5).</math> Since a number in one base can be expressed in the other base in exactly one way, and the value of <math>c_2</math> is dependent on <math>a_1, b_1,</math> and <math>c_1,</math> there is one solution <math>(a_1, b_1, c_1, d_1)</math> for every <math>(a_2, b_2)</math> in
 +
 
 +
<cmath>N_5 =  625a_1 + 125b_1 + 25c_1 + 5d_1 + d_2 = N_6 =  216a_2 + 36b_2 + 6c_2 + d_2.</cmath>
 +
 
 +
And for every pair we have, there are five choices for <math>e_1 = d_2</math> (any integer from <math>0 - 4</math>). So the answer is <math>5 \cdot 5 = \boxed{25}.</math>
 +
 
 +
~ [[User:grogg007|grogg007]], Nafer
 +
 
 +
==Solution 4==
 +
 
 +
Observe that the maximum possible value of the sum of the last two digits of the base <math>5</math> number and the base <math>6</math> number is <math>44+55=99</math>.
 +
Let <math>N \equiv a \pmod {25}</math> and <math>N \equiv b \pmod {36}</math>.
 +
 
 +
If <math>a < \frac{25}{2}</math>, <math>2N \equiv 2a \pmod {25}</math> and if <math>a > \frac{25}{2}</math>, <math>2N \equiv 2a - 25 \pmod {25}</math>.
 +
 
 +
Using the same logic for <math>b</math>, if <math>b < 18</math>, <math>2N \equiv 2b \pmod {36}</math>, and in the other case <math>2N \equiv 2b - 36 \pmod {36}</math>.
 +
 
 +
We can do four cases:
 +
 
 +
Case 1: <math>a + b = 2a - 25 + 2b - 36 \implies a + b = 61</math>.
 +
 
 +
For this case, there is trivially only one possible solution, <math>(a, b) = (25, 36)</math>, which is equivalent to <math>(a, b) = (0, 0)</math>.
 +
 
 +
Case 2: <math>a + b = 2a - 25 + 2b \implies a + b = 25</math>.
 +
 
 +
Note that in this case, <math>a \geq 13</math> must hold, and <math>b < 18</math> must hold.
 +
We find the possible ordered pairs to be: <math>(13, 12), (14, 11), (15, 10), ..., (24, 1)</math> for a total of <math>12</math> ordered pairs.
 +
 
 +
Case 3: <math>a + b = 2a + 2b - 36 \implies a + b = 36</math>.
 +
 
 +
Note that in this case, <math>b \geq 18</math> must hold, and <math>a < 13</math> must hold.
 +
We find the possible ordered pairs to be: <math>(24, 12), (25, 11), (26, 10), ..., (35, 1)</math> for a total of <math>12</math> ordered pairs.
 +
 
 +
Case 4: <math>a + b = 2a + 2b</math>.
 +
 
 +
Trivially no solutions except <math>(a, b) = (0, 0)</math>, which matches the solution in Case 1, which makes this an overcount.
 +
 
 +
By CRT, each solution <math>(a, b)</math> corresponds exactly one positive integer in a set of exactly <math>\text{lcm} (25, 36) = 900</math> consecutive positive integers, and since there are <math>900</math> positive integers between <math>100</math> and <math>999</math>, our induction is complete, and our answer is <math>1 + 12 + 12 = \boxed{\textbf{(E) }25}</math>.
 +
 
 +
~ fidgetboss_4000
 +
 
 +
 
 +
==Video Solution==
 +
 
 +
https://www.youtube.com/watch?v=tgCK-H5jsOE&t=497s
 +
 
 +
==See Also==
 +
 
 
{{AMC12 box|year=2013|ab=B|num-b=22|num-a=24}}
 
{{AMC12 box|year=2013|ab=B|num-b=22|num-a=24}}
  
Line 87: Line 162:
  
 
{{MAA Notice}}
 
{{MAA Notice}}
 +
 +
[[Category:Intermediate Number Theory Problems]]

Latest revision as of 01:04, 10 August 2025

The following problem is from both the 2013 AMC 12B #23 and 2013 AMC 10B #25, so both problems redirect to this page.

Problem

Bernardo chooses a three-digit positive integer $N$ and writes both its base-5 and base-6 representations on a blackboard. Later LeRoy sees the two numbers Bernardo has written. Treating the two numbers as base-10 integers, he adds them to obtain an integer $S$. For example, if $N = 749$, Bernardo writes the numbers $10,\!444$ and $3,\!245$, and LeRoy obtains the sum $S = 13,\!689$. For how many choices of $N$ are the two rightmost digits of $S$, in order, the same as those of $2N$?

$\textbf{(A)}\ 5 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}\ 20 \qquad\textbf{(E)}\ 25$

Solution 1

First, we can examine the units digits of the number base 5 and base 6 and eliminate some possibilities.

Say that $N \equiv a \pmod{6}$

also that $N \equiv b \pmod{5}$

Substituting these equations into the question and setting the units digits of $2N$ and $S$ equal to each other, it can be seen that $b < 5$ (because otherwise $a$ and $b$ will have different parities), and thus $a=b$. $N \equiv a \pmod{6}$, $N \equiv  a \pmod{5}$, $\implies N=a \pmod{30}$, $0 \le a \le 4$

Therefore, $N$ can be written as $30x+y$ and $2N$ can be written as $60x+2y$

Just keep in mind that $y$ can be one of five choices: $0, 1, 2, 3,$ or $4$, ; Also, we have already found which digits of $y$ will add up into the units digits of $2N$.

Now, examine the tens digit, $x$ by using $\mod{25}$ and $\mod{36}$ to find the tens digit (units digits can be disregarded because $y=0,1,2,3,4$ will always work) Then we take $N=30x+y$ $\mod{25}$ and $\mod{36}$ to find the last two digits in the base $5$ and $6$ representation. \[N \equiv 30x \pmod{36}\] \[N \equiv 30x \equiv 5x \pmod{25}\] Both of those must add up to \[2N\equiv60x \pmod{100}\]

($33 \ge x \ge 4$)

Now, since $y=0,1,2,3,4$ will always work if $x$ works, then we can treat $x$ as a units digit instead of a tens digit in the respective bases and decrease the mods so that $x$ is now the units digit. \[N \equiv 5x \pmod{6}\] \[N \equiv 6x \equiv x \pmod{5}\] \[2N\equiv 6x \pmod{10}\]

Say that $x=5m+n$ (m is between 0-6, n is 0-4 because of constraints on x) Then

\[N \equiv 5m+n \pmod{5}\] \[N \equiv 25m+5n \pmod{6}\] \[2N\equiv30m + 6n \pmod{10}\]

and this simplifies to

\[N \equiv n \pmod{5}\] \[N \equiv m+5n \pmod{6}\] \[2N\equiv 6n \pmod{10}\]

From careful inspection, this is true when

$n=0, m=6$

$n=1, m=6$

$n=2, m=2$

$n=3, m=2$

$n=4, m=4$

This gives you $5$ choices for $x$, and $5$ choices for $y$, so the answer is $5* 5 = \boxed{\textbf{(E) }25}$

Solution 2

Notice that there are exactly $1000-100=900=5^2\cdot 6^2$ possible values of $N$. This means, in $100\le N\le 999$, every possible combination of $2$ digits will happen exactly once. We know that $N=900,901,902,903,904$ work because $900\equiv\dots00_5\equiv\dots00_6$.

We know for sure that the units digit will add perfectly every $30$ added or subtracted, because $\text{lcm }(5, 6)=30$. So we only have to care about cases of $N$ every $30$ subtracted. In each case, $2N$ subtracts $6$/adds $4$, $N_5$ subtracts $1$ and $N_6$ adds $1$ for the $10$'s digit.

\[\textbf{5 }\textcolor{red}{\text{ 0}}\text{ 4 3 2 1 0 }\textcolor{red}{\text{4}}\text{ 3 2 1 0 4 3 2 1 0 4 }\textcolor{red}{\text{3 2}}\text{ 1 0 4 3 2 1 0 4 3 2 }\textcolor{red}{\text{1}}\]

\[\textbf{6 }\textcolor{red}{\text{ 0}}\text{ 1 2 3 4 5 }\textcolor{red}{\text{0}}\text{ 1 2 3 4 5 0 1 2 3 4 }\textcolor{red}{\text{5 0}}\text{ 1 2 3 4 5 0 1 2 3 4 }\textcolor{red}{\text{5}}\]

\[\textbf{10}\textcolor{red}{\text{ 0}}\text{ 4 8 2 6 0 }\textcolor{red}{\text{4}}\text{ 8 2 6 0 4 8 2 6 0 4 }\textcolor{red}{\text{8 2}}\text{ 6 0 4 8 2 6 0 4 8 2 }\textcolor{red}{\text{6}}\]

As we can see, there are $5$ cases, including the original, that work. These are highlighted in $\textcolor{red}{\text{red}}$. So, thus, there are $5$ possibilities for each case, and $5\cdot 5=\boxed{\textbf{(E) }25}$.

Solution 3

Notice that $N_5$ ranges from $3$ to $5$ digits and $N_6$ ranges from $3$ to $4$ digits.

So we can let $N_5 = a_1b_1c_1d_1e_1$ and $N_6 = a_2b_2c_2d_2$. \[S = 10000a_1 + 1000(b_1 + a_2) + 100(c_1 + b_2) + 10(d_1 + c_2) + e_1 + d_2.\] To make it easier to work with mod 100, we will let $N = 625a_1 + 125b_1 + 25c_1 + 5d_1 + e_1$ here. So we have:

\[2N \equiv S \pmod{100} \implies 2(625a_1 + 125b_1 + 25c_1 + 5d_1 + e_1) \equiv 10(d_1 + c_2) + e_1 + d_2 \pmod{100}.\]

\[50(a_1 + b_1 + c_1) + \cancel{10d_1} + 2e_1 \equiv \cancel{10d_1} + 10c_2 + e_1 + d_2 \pmod{100}.\]

\[50(a_1 + b_1 + c_1) + e_1 \equiv 10c_2 + d_2 \pmod{100}.\]

Now note that $50(a_1 + b_1 + c_1)$ and $10c_2$ will always end with zeros, so the only way for this expression to be true is if $e_1 = d_2.$

\[50(a_1 + b_1 + c_1) + \cancel{e_1} \equiv 10c_2 + \cancel{d_2} \pmod{100}\]

\[5(a_1 + b_1 + c_1) \equiv c_2 \pmod{10}.\]

So $c_2$ can either be $0$ or $5$.

Now we can express $N$ in its base-six and base-five forms and set them equal to each other:

\[625a_1 + 125b_1 + 25c_1 + 5d_1 + \cancel{d_2} = 216a_2 + 36b_2 + 6c_2 + \cancel{d_2}\]

\[5(125a_1 + 25b_1 + 5c_1 + d_1) = 6c_2 + 36(b_2 + 6a_2).\]

Since we established $5 \mid c_2$ (remember, $c_2$ can either be $0$ or $5$), for the right hand side to be a multiple of $5$, $5 \mid b_2 + 6a_2.$ So we have seven possible pairs for $a_2$ and $b_2$:

\[(a_2, b_2) \rightarrow (5,0), (4,1), (3,2), (2,3), (1,4), (0, 5), (0,0).\] But if we had $(0,0),$ then $N_6$ would only have two digits, and $N$ would not be a three digit number. And if we had $a_2 = 5,$ then $N$ would exceed $1000$ and also not be a three digit number. So we actually have five valid pairs: $(4,1), (3,2), (2,3), (1,4), (0, 5).$ Since a number in one base can be expressed in the other base in exactly one way, and the value of $c_2$ is dependent on $a_1, b_1,$ and $c_1,$ there is one solution $(a_1, b_1, c_1, d_1)$ for every $(a_2, b_2)$ in

\[N_5 =  625a_1 + 125b_1 + 25c_1 + 5d_1 + d_2 = N_6 =  216a_2 + 36b_2 + 6c_2 + d_2.\]

And for every pair we have, there are five choices for $e_1 = d_2$ (any integer from $0 - 4$). So the answer is $5 \cdot 5 = \boxed{25}.$

~ grogg007, Nafer

Solution 4

Observe that the maximum possible value of the sum of the last two digits of the base $5$ number and the base $6$ number is $44+55=99$. Let $N \equiv a \pmod {25}$ and $N \equiv b \pmod {36}$.

If $a < \frac{25}{2}$, $2N \equiv 2a \pmod {25}$ and if $a > \frac{25}{2}$, $2N \equiv 2a - 25 \pmod {25}$.

Using the same logic for $b$, if $b < 18$, $2N \equiv 2b \pmod {36}$, and in the other case $2N \equiv 2b - 36 \pmod {36}$.

We can do four cases:

Case 1: $a + b = 2a - 25 + 2b - 36 \implies a + b = 61$.

For this case, there is trivially only one possible solution, $(a, b) = (25, 36)$, which is equivalent to $(a, b) = (0, 0)$.

Case 2: $a + b = 2a - 25 + 2b \implies a + b = 25$.

Note that in this case, $a \geq 13$ must hold, and $b < 18$ must hold. We find the possible ordered pairs to be: $(13, 12), (14, 11), (15, 10), ..., (24, 1)$ for a total of $12$ ordered pairs.

Case 3: $a + b = 2a + 2b - 36 \implies a + b = 36$.

Note that in this case, $b \geq 18$ must hold, and $a < 13$ must hold. We find the possible ordered pairs to be: $(24, 12), (25, 11), (26, 10), ..., (35, 1)$ for a total of $12$ ordered pairs.

Case 4: $a + b = 2a + 2b$.

Trivially no solutions except $(a, b) = (0, 0)$, which matches the solution in Case 1, which makes this an overcount.

By CRT, each solution $(a, b)$ corresponds exactly one positive integer in a set of exactly $\text{lcm} (25, 36) = 900$ consecutive positive integers, and since there are $900$ positive integers between $100$ and $999$, our induction is complete, and our answer is $1 + 12 + 12 = \boxed{\textbf{(E) }25}$.

~ fidgetboss_4000


Video Solution

https://www.youtube.com/watch?v=tgCK-H5jsOE&t=497s

See Also

2013 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2013 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png