Difference between revisions of "1980 AHSME Problems/Problem 24"

(Solution)
 
(2 intermediate revisions by the same user not shown)
Line 9: Line 9:
 
\text{(E)} \ 1.62  </math>   
 
\text{(E)} \ 1.62  </math>   
  
== Solution ==
+
== Solution 1 ==
Solution by e_power_pi_times_i
 
  
Denote <math>s</math> as the third solution. Then, by Vieta's, <math>2r+s = \dfrac{1}{2}</math>, <math>r^2+2rs = -\dfrac{21}{4}</math>, and <math>r^2s = -\dfrac{45}{8}</math>. Multiplying the top equation by <math>2r</math> and eliminating, we have <math>3r^2 = r+\dfrac{21}{4}</math>. Combined with the fact that <math>s = \dfrac{1}{2}-2r</math>, the third equation can be written as <math>(\dfrac{r+\dfrac{21}{4}}{3})(\dfrac{1}{2}-2r) = -\dfrac{45}{8}</math>, or <math>(4r+21)(4r-1) = 135</math>. Solving, we get <math>r = \dfrac{3}{2}, -\dfrac{13}{2}</math>. Plugging the solutions back in, we see that <math>-\dfrac{13}{2}</math> is an extraneous solution, and thus the answer is <math>\boxed{\text{(D)} \ 1.52}</math>
+
Since <math>(x-r)^2</math> is a factor of <math>8x^3-4x^2-42x+45</math>, <math>r</math> is a double root. Let <math>s</math> be the third root of <math>8x^3-4x^2-42x+45</math>.  
 +
 
 +
By Vieta's formulas, <math>2r+s = \frac{1}{2}</math>, so <math>s = \frac{1}{2} - 2r</math>
 +
 
 +
Also, by Vieta's formulas, <math>r^2 + 2rs = -\frac{21}{4}</math>.  Substituting <math>s = \frac{1}{2} - 2r</math> yields <math>r^2 + 2r\left(\frac{1}{2} - 2r\right) = -3r^2 + r = -\frac{21}{4}</math>.  So <math>12r^2 - 4r - 21 = 0</math>, that is, <math>(6r + 7)(2r - 3) = 0</math>.  Therefore, <math>(r, s)</math> is either <math>\left(\frac{3}{2}, -\frac{5}{2}\right)</math> or <math>\left(-\frac{7}{6}, \frac{17}{6}\right)</math>.
 +
 
 +
Finally, by Vieta's formulas, <math>r^2s = -\frac{45}{8}</math>. Though <math>(r, s) = \left(-\frac{7}{6}, \frac{17}{6}\right)</math> does not satisfy this equation, <math>\left(r, s\right) = \left(\frac{3}{2}, -\frac{5}{2}\right)</math> does. 
 +
 
 +
Therefore, <math>r = \frac{3}{2} = 1.5</math>, so <math>\boxed{\text{(\textbf{D})} \ 1.52}</math> is closest to <math>r</math>.
 +
 
 +
-e_power_pi_times_i, edited by j314andrews
 +
 
 +
== Solution 2 ==
 +
 
 +
By polynomial long division, <math>\frac{8x^3 - 4x^2 - 42x + 45}{x^2 - 2rx + r^2} = 8x + (16r-4) + \frac{(24r^2 - 8r - 42)x + (-16r^3 + 4r^2 + 45)}{x^2 - 2rx + r^2}</math>.
 +
 
 +
So <math>(24r^2 - 8r - 42)x + (-16r^3 + 4r^2 + 45) = 0</math>, that is, <math>r</math> is a root of both <math>24r^2 - 8r - 42</math> and <math>-16r^3 + 4r^2 + 45</math>.
 +
 
 +
Since <math>24r^2 - 8r - 42 = 2(6r + 7)(2r - 3)</math>, either <math>r = -\frac{7}{6}</math> or <math>r = \frac{3}{2}</math>.  By the Rational Root Theorem, <math>-\frac{7}{6}</math> is not a root of <math>-16r^3 + 4r^2 + 45</math>.  However, <math>-16\left(\frac{3}{2}\right)^3 + 4\left(\frac{3}{2}\right)^2 + 45 = -16 \cdot \frac{27}{8} + 4 \cdot \frac{9}{4} + 45 = -54 + 9 + 45 = 0</math>, so <math>\frac{3}{2}</math> is a root of <math>-16r^3 + 4r^2 + 45</math>.
 +
 
 +
Therefore, <math>r = \frac{3}{2} = 1.5</math>, so <math>\boxed{(\textbf{D})\ 1.52}</math> is closest to <math>r</math>.
 +
 
 +
-j314andrews
 +
 
 +
== Solution 3 ==
 +
 
 +
Let <math>y = 2x</math>.  Then <math>x = \frac{y}{2}</math>, so <math>8x^3 - 4x^2 - 42x + 45 = y^3 - y^2 - 21y + 45</math>.
 +
 
 +
By the Rational Root Theorem, any rational root of <math>y^3 - y^2 - 21y + 45</math> is a factor of <math>45</math>.  Of the factors of <math>45</math>, <math>3</math> and <math>5</math> are roots, and <math>y^3 - y^2 - 21y + 45 = (y-3)^2(y-5)</math>.  So <math>8x^3 - 4x^2 - 42x + 45 = (2x-3)^2(2x-5) = 8\left(x-\frac{3}{2}\right)^2\left(x-\frac{5}{2}\right)</math>, and <math>r = \frac{3}{2} = 1.5</math>. So <math>\boxed{(\textbf{D})\ 1.52}</math> is closest to <math>r</math>.
 +
 
 +
-j314andrews
  
 
== See also ==
 
== See also ==

Latest revision as of 19:13, 16 August 2025

Problem

For some real number $r$, the polynomial $8x^3-4x^2-42x+45$ is divisible by $(x-r)^2$. Which of the following numbers is closest to $r$?

$\text{(A)} \ 1.22 \qquad  \text{(B)} \ 1.32 \qquad  \text{(C)} \ 1.42 \qquad  \text{(D)} \ 1.52 \qquad  \text{(E)} \ 1.62$

Solution 1

Since $(x-r)^2$ is a factor of $8x^3-4x^2-42x+45$, $r$ is a double root. Let $s$ be the third root of $8x^3-4x^2-42x+45$.

By Vieta's formulas, $2r+s = \frac{1}{2}$, so $s = \frac{1}{2} - 2r$.

Also, by Vieta's formulas, $r^2 + 2rs = -\frac{21}{4}$. Substituting $s = \frac{1}{2} - 2r$ yields $r^2 + 2r\left(\frac{1}{2} - 2r\right) = -3r^2 + r = -\frac{21}{4}$. So $12r^2 - 4r - 21 = 0$, that is, $(6r + 7)(2r - 3) = 0$. Therefore, $(r, s)$ is either $\left(\frac{3}{2}, -\frac{5}{2}\right)$ or $\left(-\frac{7}{6}, \frac{17}{6}\right)$.

Finally, by Vieta's formulas, $r^2s = -\frac{45}{8}$. Though $(r, s) = \left(-\frac{7}{6}, \frac{17}{6}\right)$ does not satisfy this equation, $\left(r, s\right) = \left(\frac{3}{2}, -\frac{5}{2}\right)$ does.

Therefore, $r = \frac{3}{2} = 1.5$, so $\boxed{\text{(\textbf{D})} \ 1.52}$ is closest to $r$.

-e_power_pi_times_i, edited by j314andrews

Solution 2

By polynomial long division, $\frac{8x^3 - 4x^2 - 42x + 45}{x^2 - 2rx + r^2} = 8x + (16r-4) + \frac{(24r^2 - 8r - 42)x + (-16r^3 + 4r^2 + 45)}{x^2 - 2rx + r^2}$.

So $(24r^2 - 8r - 42)x + (-16r^3 + 4r^2 + 45) = 0$, that is, $r$ is a root of both $24r^2 - 8r - 42$ and $-16r^3 + 4r^2 + 45$.

Since $24r^2 - 8r - 42 = 2(6r + 7)(2r - 3)$, either $r = -\frac{7}{6}$ or $r = \frac{3}{2}$. By the Rational Root Theorem, $-\frac{7}{6}$ is not a root of $-16r^3 + 4r^2 + 45$. However, $-16\left(\frac{3}{2}\right)^3 + 4\left(\frac{3}{2}\right)^2 + 45 = -16 \cdot \frac{27}{8} + 4 \cdot \frac{9}{4} + 45 = -54 + 9 + 45 = 0$, so $\frac{3}{2}$ is a root of $-16r^3 + 4r^2 + 45$.

Therefore, $r = \frac{3}{2} = 1.5$, so $\boxed{(\textbf{D})\ 1.52}$ is closest to $r$.

-j314andrews

Solution 3

Let $y = 2x$. Then $x = \frac{y}{2}$, so $8x^3 - 4x^2 - 42x + 45 = y^3 - y^2 - 21y + 45$.

By the Rational Root Theorem, any rational root of $y^3 - y^2 - 21y + 45$ is a factor of $45$. Of the factors of $45$, $3$ and $5$ are roots, and $y^3 - y^2 - 21y + 45 = (y-3)^2(y-5)$. So $8x^3 - 4x^2 - 42x + 45 = (2x-3)^2(2x-5) = 8\left(x-\frac{3}{2}\right)^2\left(x-\frac{5}{2}\right)$, and $r = \frac{3}{2} = 1.5$. So $\boxed{(\textbf{D})\ 1.52}$ is closest to $r$.

-j314andrews

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png