Difference between revisions of "2013 AMC 10A Problems/Problem 23"
m (→Solution 2 (Stewart's Theorem)) |
|||
(43 intermediate revisions by 15 users not shown) | |||
Line 5: | Line 5: | ||
In <math>\triangle ABC</math>, <math>AB = 86</math>, and <math>AC=97</math>. A circle with center <math>A</math> and radius <math>AB</math> intersects <math>\overline{BC}</math> at points <math>B</math> and <math>X</math>. Moreover <math>\overline{BX}</math> and <math>\overline{CX}</math> have integer lengths. What is <math>BC</math>? | In <math>\triangle ABC</math>, <math>AB = 86</math>, and <math>AC=97</math>. A circle with center <math>A</math> and radius <math>AB</math> intersects <math>\overline{BC}</math> at points <math>B</math> and <math>X</math>. Moreover <math>\overline{BX}</math> and <math>\overline{CX}</math> have integer lengths. What is <math>BC</math>? | ||
+ | <math> \textbf{(A)}\ 11\qquad\textbf{(B)}\ 28\qquad\textbf{(C)}\ 33\qquad\textbf{(D)}\ 61\qquad\textbf{(E)}\ 72 </math> | ||
+ | |||
+ | ==Solution 1 (Number Theoretic Power of a Point)== | ||
+ | |||
+ | Let <math>BX = q</math>, <math>CX = p</math>, and <math>AC</math> meets the circle at <math>Y</math> and <math>Z</math>, with <math>Y</math> on <math>AC</math>. Then <math>AZ = AY = 86</math>. Using the Power of a Point (Secant-Secant Power Theorem), we get that <math>p(p+q) = 11(183) = 11 * 3 * 61</math>. We know that <math>p+q>p</math>, so <math>p</math> is either <math>3</math>, <math>11</math>, or <math>33</math>. We also know that <math>p>11</math> by the triangle inequality on <math>\triangle ACX</math>. Thus, <math>p</math> is <math>33</math> so we get that <math>BC = p+q = \boxed{\textbf{(D) }61}</math>. | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | Let <math>CX=x, BX=y</math>. Let the circle intersect <math>AC</math> at <math>D</math> and the diameter including <math>AD</math> intersect the circle again at <math>E</math>. | ||
+ | Use power of a point on point C to the circle centered at A. | ||
+ | So <math>CX \cdot CB=CD \cdot CE \Rightarrow x(x+y)=(97-86)(97+86) \Rightarrow x(x+y)=3*11*61</math>. | ||
− | <math> | + | Obviously <math>x+y>x</math> so we have three solution pairs for <math>(x,x+y)=(1,2013),(3,671),(11,183),(33,61)</math>. |
− | + | By the Triangle Inequality, only<math> x+y=61</math> yields a possible length of <math>BX+CX=BC</math>. | |
+ | |||
+ | Therefore, the answer is <math> \boxed{\textbf{(D) }61}</math>. | ||
+ | |||
+ | ==Solution 3== | ||
+ | <asy> | ||
+ | unitsize(2); | ||
+ | import olympiad; | ||
+ | import graph; | ||
− | === | + | pair A,B,C,D,E; |
+ | A = (0,0); | ||
+ | B = (70,51); | ||
+ | C = (97,0); | ||
+ | D = (82,29); | ||
+ | E = (76,40); | ||
− | + | draw(Circle((0,0),86.609)); | |
+ | draw(A--B--C--A); | ||
+ | draw(A--B--E--A); | ||
+ | draw(A--D); | ||
+ | dot(A); | ||
+ | dot(B,blue); | ||
+ | dot(C); | ||
+ | dot(D,blue); | ||
+ | dot(E); | ||
+ | label("A",A,S); | ||
+ | label("B",B,NE); | ||
+ | label("C",C,S); | ||
+ | label("D",D,NE); | ||
+ | label("E",E,NE); | ||
+ | label("86",(A+B)/2,NW); | ||
+ | label("86",(A+D)/2,SE); | ||
+ | label("97",(A+C)/2,S); | ||
+ | label("h",(A+E)/2,N); | ||
+ | label("k",(E+D)/2,NE); | ||
+ | label("k",(B+E)/2,NE); | ||
+ | label("m",(C+D)/2,NE); | ||
− | |||
− | |||
− | + | fill(anglemark(A,E,D,100),black); | |
− | + | label("$90^\circ$",anglemark(A,E,D),3*S); | |
+ | </asy> | ||
− | <math> | + | We first draw the height of isosceles triangle <math>ABD</math> and get two equations by the [[Pythagorean Theorem]]. |
+ | First, <math>h^2 + k^2 = 86^2</math>. Second, <math>h^2 + (k + m)^2 = 97^2</math>. | ||
+ | Subtracting these two equations, we get <math>2km + m^2 = 97^2 - 86^2 = (97 - 86)(97 + 86) = 2013</math>. | ||
+ | We then add <math>k^2</math> to both sides to get <math>k^2 + 2km + m^2 = 2013 + k^2</math>. | ||
+ | We then complete the square to get <math>(k + m)^2 = 2013 + k^2</math>. Because <math>k</math> and <math>m</math> are both integers, we get that <math>2013 + k^2</math> is a square number. Simple guess and check reveals that <math>k = 14</math>. | ||
+ | Because <math>k</math> equals <math>14</math>, therefore <math>m = 33</math>. We want <math>\overline{BC} = 2k + m</math>, so we get that <math>\overline{BC} = \boxed{(D)~61}</math>. | ||
− | <math> | + | <math>\phantom{solution and diagram by bobjoe123}</math> |
− | + | ==Solution 4== | |
− | + | Let <math>E</math> be the foot of the altitude from <math>A</math> to <math>BX.</math> Since <math>\triangle ABX</math> is isosceles <math>AX=AB=86,EB=EX,</math> and the answer is <math>EC+EB=EC+EX.</math> <math>(EC+EX)(EC-EX)=EC^2-EX^2=(97^2-AE^2)-(86^2-AE^2)=97^2-86^2=2013</math> by the Pythagorean Theorem. Only <math>EC+EX=\boxed{(D)~61}</math> is a factor of <math>2013</math> such that <math>97>EC+EX>EC-EX=\frac{2013}{EC+EX}.</math> | |
− | + | ~dolphin7 | |
− | <math> | + | ==Solution 5== |
+ | We can apply Stewarts to <math>\triangle{ABC}</math> with cevian <math>AX.</math> If we let <math>BX = b</math> and <math>CX = c,</math> We can write the equation, | ||
+ | <cmath>bc(b+c) + 86^2(b+c) = 97^2(b) + 86^2(c).</cmath> | ||
+ | Now we do a clever set of changes to factor, | ||
+ | <cmath>bc(b+c) = 97^2(b) + 86^2(c) - 86^2(b+c) = 97^2(b)+86^2(c-(b+c)).</cmath> | ||
+ | <cmath>bc(b+c)=97^2(b)+86^2(-b) = b(97^2-86^2).</cmath> | ||
+ | <cmath>c(b+c) = 97^2 - 86^2 = 11\cdot 183 = 3 \cdot 11 \cdot 61.</cmath> | ||
+ | Now we can just use the factors of <math>3 \cdot 11 \cdot 61</math> to find what <math>c</math> is and an allowed value of <math>b+c.</math> Using triangle inequality we have <cmath>11 < BC = b+c < 183.</cmath> Therefore applying these restrictions the only value of <math>b+c</math> that works is <math>\boxed{61}</math> with corresponding values of <math>c=33</math> and <math>b = 28.</math> | ||
− | + | ~[[User:Mathkiddus|mathkiddus]] | |
− | === | + | ==Solution 6 (Law of Cosines)== |
+ | Let <math>x = BC</math>, <math>y = XC</math>, and <math>\theta = \angle BCA = \angle XCA </math>. Using law of cosines on <math>\triangle ABC</math> and <math>\triangle AXC</math> we get | ||
+ | <cmath>\cos(\theta) = \frac{97^2-86^2 + x^2}{2\cdot97x} = \frac{97^2-86^2 + y^2}{2\cdot97y}</cmath> | ||
+ | <cmath>(2013 + x^2)y = (2013 + y^2)x</cmath> | ||
+ | <cmath>2013(x-y) = xy(x-y)</cmath> | ||
+ | Because <math>x-y = \overline{BX}</math>, we know <math>x-y</math> is nonzero, so | ||
+ | <cmath>xy = 2013</cmath> | ||
+ | Now you can list factors of 2013 and use the triangle innequlity as above solutions to get <math>x = \boxed{(D)~61}</math> | ||
− | |||
− | |||
− | + | ==Video Solution by Richard Rusczyk== | |
− | + | https://www.youtube.com/watch?v=f1nxu8MWWKc | |
− | |||
− | + | == Video Solution by OmegaLearn == | |
− | + | https://youtu.be/NsQbhYfGh1Q?t=2692 | |
− | + | ~ pi_is_3.14 | |
==See Also== | ==See Also== | ||
{{AMC10 box|year=2013|ab=A|num-b=22|num-a=24}} | {{AMC10 box|year=2013|ab=A|num-b=22|num-a=24}} | ||
+ | |||
+ | [[Category:Introductory Geometry Problems]] | ||
+ | [[Category:Number theory]] | ||
{{AMC12 box|year=2013|ab=A|num-b=18|num-a=20}} | {{AMC12 box|year=2013|ab=A|num-b=18|num-a=20}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 18:33, 28 July 2025
- The following problem is from both the 2013 AMC 12A #19 and 2013 AMC 10A #23, so both problems redirect to this page.
Contents
Problem
In ,
, and
. A circle with center
and radius
intersects
at points
and
. Moreover
and
have integer lengths. What is
?
Solution 1 (Number Theoretic Power of a Point)
Let ,
, and
meets the circle at
and
, with
on
. Then
. Using the Power of a Point (Secant-Secant Power Theorem), we get that
. We know that
, so
is either
,
, or
. We also know that
by the triangle inequality on
. Thus,
is
so we get that
.
Solution 2
Let . Let the circle intersect
at
and the diameter including
intersect the circle again at
.
Use power of a point on point C to the circle centered at A.
So .
Obviously so we have three solution pairs for
.
By the Triangle Inequality, only
yields a possible length of
.
Therefore, the answer is .
Solution 3
We first draw the height of isosceles triangle and get two equations by the Pythagorean Theorem.
First,
. Second,
.
Subtracting these two equations, we get
.
We then add
to both sides to get
.
We then complete the square to get
. Because
and
are both integers, we get that
is a square number. Simple guess and check reveals that
.
Because
equals
, therefore
. We want
, so we get that
.
Solution 4
Let be the foot of the altitude from
to
Since
is isosceles
and the answer is
by the Pythagorean Theorem. Only
is a factor of
such that
~dolphin7
Solution 5
We can apply Stewarts to with cevian
If we let
and
We can write the equation,
Now we do a clever set of changes to factor,
Now we can just use the factors of
to find what
is and an allowed value of
Using triangle inequality we have
Therefore applying these restrictions the only value of
that works is
with corresponding values of
and
Solution 6 (Law of Cosines)
Let ,
, and
. Using law of cosines on
and
we get
Because
, we know
is nonzero, so
Now you can list factors of 2013 and use the triangle innequlity as above solutions to get
Video Solution by Richard Rusczyk
https://www.youtube.com/watch?v=f1nxu8MWWKc
Video Solution by OmegaLearn
https://youtu.be/NsQbhYfGh1Q?t=2692
~ pi_is_3.14
See Also
2013 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.