Difference between revisions of "2001 AIME I Problems/Problem 4"
Johnting1021 (talk | contribs) m (→See also) |
(→Solution 4 (very fast)) |
||
(18 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | In triangle <math>ABC</math>, angles <math>A</math> and <math>B</math> measure <math>60</math> degrees and <math>45</math> degrees, respectively. The bisector of angle <math>A</math> intersects <math>\overline{BC}</math> at <math>T</math>, and <math>AT=24</math>. The area of triangle <math>ABC</math> can be written in the form <math>a+b\sqrt{c}</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c</math>. | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | After chasing angles, <math>\angle ATC=75^{\circ}</math> and <math>\angle TCA=75^{\circ}</math>, meaning <math>\triangle TAC</math> is an isosceles triangle and <math>AC=24</math>. | ||
+ | |||
+ | Using law of sines on <math>\triangle ABC</math>, we can create the following equation: | ||
+ | |||
+ | <math>\frac{24}{\sin(\angle ABC)}</math> <math>=</math> <math>\frac{BC}{\sin(\angle BAC)}</math> | ||
+ | |||
+ | <math>\angle ABC=45^{\circ}</math> and <math>\angle BAC=60^{\circ}</math>, so <math>BC = 12\sqrt{6}</math>. | ||
+ | |||
+ | We can then use the Law of Sines area formula <math>\frac{1}{2} \cdot BC \cdot AC \cdot \sin(\angle BCA)</math> to find the area of the triangle. | ||
+ | |||
+ | <math>\sin(75)</math> can be found through the sin addition formula. | ||
+ | |||
+ | <math>\sin(75)</math> <math>=</math> <math>\frac{\sqrt{6} + \sqrt{2}}{4}</math> | ||
+ | |||
+ | Therefore, the area of the triangle is <math>\frac{\sqrt{6} + \sqrt{2}}{4}</math> <math>\cdot</math> <math>24</math> <math>\cdot</math> <math>12\sqrt{6}</math> <math>\cdot</math> <math>\frac{1}{2}</math> | ||
+ | |||
+ | <math>72\sqrt{3} + 216</math> | ||
+ | |||
+ | <math>72 + 3 + 216 =</math> <math>\boxed{291}</math> | ||
+ | |||
+ | ==Solution 2 (no trig)== | ||
+ | First, draw a good diagram. | ||
+ | |||
+ | We realize that <math>\angle C = 75^\circ</math>, and <math>\angle CAT = 30^\circ</math>. Therefore, <math>\angle CTA = 75^\circ</math> as well, making <math>\triangle CAT</math> an isosceles triangle. <math>AT</math> and <math>AC</math> are congruent, so <math>AC=24</math>. We now drop an altitude from <math>C</math>, and call the foot this altitude point <math>D</math>. | ||
+ | <center><asy> | ||
+ | size(200); | ||
+ | defaultpen(linewidth(0.4)+fontsize(8)); | ||
+ | |||
+ | pair A,B,C,D,T,F; | ||
+ | A = origin; | ||
+ | T = scale(24)*dir(30); | ||
+ | C = scale(24)*dir(60); | ||
+ | B = extension(C,T,A,(1,0)); | ||
+ | F = foot(T,A,B); | ||
+ | D = foot(C,A,B); | ||
+ | draw(A--B--C--A--T, black+0.8); | ||
+ | draw(C--D, dashed); | ||
+ | label(rotate(degrees(T-A))*"$24$", A--T, N); | ||
+ | label(rotate(degrees(C-A))*"$24$", A--C, 2*NW); | ||
+ | |||
+ | label("$12\sqrt 3$", C--D, E); | ||
+ | label("$12\sqrt 3$", D--B, S); | ||
+ | label("$12$", A--D, S); | ||
+ | pen p = fontsize(8)+red; | ||
+ | MA("45^\circ", C,B,A,2); | ||
+ | MA("30^\circ", B,A,T,2.5); | ||
+ | MA("30^\circ", T,A,C,3.5); | ||
+ | |||
+ | dot("$A$", A, SW); | ||
+ | dot("$B$", B, SE); | ||
+ | dot("$C$", C, N); | ||
+ | dot("$T$", T, NE); | ||
+ | dot("$D$", D, S); | ||
+ | </asy></center> | ||
+ | By 30-60-90 triangles, <math>AD=12</math> and <math>CD=12\sqrt{3}</math>. | ||
+ | |||
+ | We also notice that <math>\triangle CDB</math> is an isosceles right triangle. <math>CD</math> is congruent to <math>BD</math>, which makes <math>BD=12\sqrt{3}</math>. The base <math>AB</math> is <math>12+12\sqrt{3}</math>, and the altitude <math>CD=12\sqrt{3}</math>. We can easily find that the area of triangle <math>ABC</math> is <math>216+72\sqrt{3}</math>, so <math>a+b+c=\boxed{291}</math>. | ||
+ | |||
+ | -youyanli | ||
+ | |||
+ | ==Solution 3(Speedy and Simple)== | ||
+ | |||
+ | After drawing line <math>AT</math>, we see that we have two triangles: <math>\triangle ABT,</math> with <math>45</math>, <math>30</math>, and <math>105</math> degrees, and <math>\triangle ATC</math>, with <math>30</math>, <math>75</math>, <math>75</math> degrees. If we can sum these two triangles' areas, we have our answer. | ||
+ | |||
+ | Let's take care of <math>\triangle ATC</math> first. We see that <math>\triangle ATC</math> is a isosceles triangle, with <math>AT = AC = 24</math>. Because the area of a triangle is <math>\frac{1}{2}ab\sin C</math>, we have <math>\frac{1}{2}\cdot 24^2\cdot\frac{1}{2}</math>, which is equal to <math>144.</math> | ||
+ | |||
+ | Now, on to <math>\triangle ABT</math>. Draw the altitude from angle <math>\angle T</math> to <math>AB</math>, and call the point of intersection <math>D</math>. This splits <math>\triangle ABT</math> into <math>2</math> triangles, one with <math>30-60-90</math> (<math>\triangle ADT</math>), and another with <math>45-45-90</math> (<math>\triangle BDT</math>). Now, because we know that <math>AT</math> is <math>24</math>, we have by special right triangle ratios. The area of <math>\triangle ADT</math> is <math>\frac{12\sqrt{3}\cdot 12}{2}</math>, and the area of <math>\triangle BDT</math> is <math>\frac{12\cdot 12}{2}</math>, which adds to <math>72\sqrt{3} + 72</math>. | ||
+ | |||
+ | Adding this to <math>\triangle ATC</math> we get a total sum of <math>216 + 72\sqrt{3}.</math> Thus, <math>a + b + c</math> would be <math>216 + 72 + 3 = \boxed{291}.</math> | ||
+ | |||
+ | ~MathCosine | ||
+ | |||
+ | ==Solution 4 (very fast)== | ||
+ | Recall the triangle area via sine formula <math>\frac{ab\sin{C}}{2}</math>. We notice that they have given almost all we need to use this, since <math>AC=24</math> by properties of isosceles triangles and <math>\angle A</math> itself equals <math>60</math>. So, we are trying to find <math>AB</math>. This is very trivial, as when we drop an altitude from <math>T</math> to <math>AB</math> (let the intersecting point be <math>U</math>), <math>AU=12\sqrt{3}</math> and <math>BU=12</math> by <math>30-60-90</math> and <math>45-45-90</math> triangles respectively. Thus the answer is just <cmath>\frac{(12+12\sqrt{3})(24)\sin{60}}{2}</cmath> | ||
+ | <cmath>=(12+12\sqrt{3})(6)(\sqrt{3})</cmath> | ||
+ | <cmath>=72\sqrt{3}+72\times 3</cmath> | ||
+ | <cmath>=216 + 72\sqrt{3}</cmath> | ||
+ | <cmath>\Longrightarrow 216+72+3=\boxed{291}</cmath>. | ||
+ | |||
+ | ~martianrunner | ||
+ | |||
+ | == Video Solution by OmegaLearn == | ||
+ | https://youtu.be/BIyhEjVp0iM?t=526 | ||
+ | |||
+ | ~ pi_is_3.14 | ||
+ | |||
+ | ==See also== | ||
+ | {{AIME box|year=2001|n=I|num-b=3|num-a=5}} | ||
+ | |||
+ | {{MAA Notice}} |
Latest revision as of 21:08, 23 June 2025
Contents
Problem
In triangle , angles
and
measure
degrees and
degrees, respectively. The bisector of angle
intersects
at
, and
. The area of triangle
can be written in the form
, where
,
, and
are positive integers, and
is not divisible by the square of any prime. Find
.
Solution
After chasing angles, and
, meaning
is an isosceles triangle and
.
Using law of sines on , we can create the following equation:
and
, so
.
We can then use the Law of Sines area formula to find the area of the triangle.
can be found through the sin addition formula.
Therefore, the area of the triangle is
Solution 2 (no trig)
First, draw a good diagram.
We realize that , and
. Therefore,
as well, making
an isosceles triangle.
and
are congruent, so
. We now drop an altitude from
, and call the foot this altitude point
.
![[asy] size(200); defaultpen(linewidth(0.4)+fontsize(8)); pair A,B,C,D,T,F; A = origin; T = scale(24)*dir(30); C = scale(24)*dir(60); B = extension(C,T,A,(1,0)); F = foot(T,A,B); D = foot(C,A,B); draw(A--B--C--A--T, black+0.8); draw(C--D, dashed); label(rotate(degrees(T-A))*"$24$", A--T, N); label(rotate(degrees(C-A))*"$24$", A--C, 2*NW); label("$12\sqrt 3$", C--D, E); label("$12\sqrt 3$", D--B, S); label("$12$", A--D, S); pen p = fontsize(8)+red; MA("45^\circ", C,B,A,2); MA("30^\circ", B,A,T,2.5); MA("30^\circ", T,A,C,3.5); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, N); dot("$T$", T, NE); dot("$D$", D, S); [/asy]](http://latex.artofproblemsolving.com/4/d/f/4df524bae2eda84cea879e883fc1758de646f8c7.png)
By 30-60-90 triangles, and
.
We also notice that is an isosceles right triangle.
is congruent to
, which makes
. The base
is
, and the altitude
. We can easily find that the area of triangle
is
, so
.
-youyanli
Solution 3(Speedy and Simple)
After drawing line , we see that we have two triangles:
with
,
, and
degrees, and
, with
,
,
degrees. If we can sum these two triangles' areas, we have our answer.
Let's take care of first. We see that
is a isosceles triangle, with
. Because the area of a triangle is
, we have
, which is equal to
Now, on to . Draw the altitude from angle
to
, and call the point of intersection
. This splits
into
triangles, one with
(
), and another with
(
). Now, because we know that
is
, we have by special right triangle ratios. The area of
is
, and the area of
is
, which adds to
.
Adding this to we get a total sum of
Thus,
would be
~MathCosine
Solution 4 (very fast)
Recall the triangle area via sine formula . We notice that they have given almost all we need to use this, since
by properties of isosceles triangles and
itself equals
. So, we are trying to find
. This is very trivial, as when we drop an altitude from
to
(let the intersecting point be
),
and
by
and
triangles respectively. Thus the answer is just
.
~martianrunner
Video Solution by OmegaLearn
https://youtu.be/BIyhEjVp0iM?t=526
~ pi_is_3.14
See also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.