Difference between revisions of "1995 AIME Problems/Problem 7"
m |
(fmt) |
||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Given that <math>\displaystyle (1+\sin t)(1+\cos t)=5/4</math> and | Given that <math>\displaystyle (1+\sin t)(1+\cos t)=5/4</math> and | ||
| − | + | :<math>(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},</math> | |
where <math>\displaystyle k, m,</math> and <math>\displaystyle n_{}</math> are positive integers with <math>\displaystyle m_{}</math> and <math>\displaystyle n_{}</math> relatively prime, find <math>\displaystyle k+m+n.</math> | where <math>\displaystyle k, m,</math> and <math>\displaystyle n_{}</math> are positive integers with <math>\displaystyle m_{}</math> and <math>\displaystyle n_{}</math> relatively prime, find <math>\displaystyle k+m+n.</math> | ||
| Line 7: | Line 7: | ||
== See also == | == See also == | ||
| − | |||
| − | |||
* [[1995 AIME Problems]] | * [[1995 AIME Problems]] | ||
| + | |||
| + | {{AIME box|year=1995|num-b=6|num-a=8}} | ||