Difference between revisions of "1988 AJHSME Problems/Problem 6"

(Solution 2)
 
Line 13: Line 13:
  
 
~sakshamsethi
 
~sakshamsethi
 +
 +
==Solution 3==
 +
<math>\frac{(0.2)^3}{(0.02)^2}</math> is like equal to <math>\frac{(2)^3  \times (.1)^3}{(2)^2 \times (.1)^4}</math>. Dividing both the numerator and the denominator by <math>(.1)^3</math> we get <math>\frac{(2)^3}{(2)^2 \times (.1)}</math>, and then we divide both sides by <math>(2)^2</math> so we get <math>\frac{2}{.1}</math> which is equal to <math>20</math>.
 +
 +
~doraluvs2yap
  
 
==See Also==
 
==See Also==

Latest revision as of 16:47, 26 June 2025

Problem

$\frac{(.2)^3}{(.02)^2} =$

$\text{(A)}\ .2 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 10 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 20$

Solution

Converting the decimals to fractions gives us $\frac{(.2)^3}{(.02)^2} =\frac{\left( \frac{1}{5}\right)^3}{\left(\frac{1}{50}\right)^2}=\frac{50^2}{5^3}=\frac{2500}{125}=20\Rightarrow \mathrm{(E)}$.

Solution 2

We expand $\frac{(0.2)^3}{(0.02)^2}$, and get $\frac{(0.2) \times (0.2) \times (0.2)}{(0.02) \times (0.02)}$. The two $0.02$'s "cancel" out with the two $0.2$'s, leaving the fraction as: $(10) \times (10) \times (0.2)$. Using basic calculations, we compute this expression to get $20\Rightarrow \mathrm{(E)}$.

~sakshamsethi

Solution 3

$\frac{(0.2)^3}{(0.02)^2}$ is like equal to $\frac{(2)^3  \times (.1)^3}{(2)^2 \times (.1)^4}$. Dividing both the numerator and the denominator by $(.1)^3$ we get $\frac{(2)^3}{(2)^2 \times (.1)}$, and then we divide both sides by $(2)^2$ so we get $\frac{2}{.1}$ which is equal to $20$.

~doraluvs2yap

See Also

1988 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png