Difference between revisions of "2006 AIME I Problems/Problem 7"
m (→Solution) |
(→Solution) |
||
| Line 7: | Line 7: | ||
Note that the apex of the angle is not on the parallel lines. Set up a [[coordinate proof]]. | Note that the apex of the angle is not on the parallel lines. Set up a [[coordinate proof]]. | ||
| − | Let the set of parallel lines be [[perpendicular]] to the [[x-axis]], such that they cross it at <math>0, 1, 2 \ldots</math>. The base of region <math>\mathcal{A}</math> is on the line <math>x = 1</math>. The bigger base of region <math>\mathcal{D}</math> is on the line <math>x = 7</math>. | + | Let the set of parallel lines be [[perpendicular]] to the [[x-axis]], such that they cross it at <math>0, 1, 2 \ldots</math>. The base of region <math>\mathcal{A}</math> is on the line <math>x = 1</math>. The bigger base of region <math>\mathcal{D}</math> is on the line <math>x = 7</math>. |
| + | Cutting the angle by half don't change the problem. After the cut, the top side of the angle will be <math>y = x - s</math>; the bottom side will be x-axis. | ||
Since the area of the triangle is equal to <math>\frac{1}{2}bh</math>, | Since the area of the triangle is equal to <math>\frac{1}{2}bh</math>, | ||
Revision as of 21:03, 11 March 2007
Problem
An angle is drawn on a set of equally spaced parallel lines as shown. The ratio of the area of shaded region
to the area of shaded region
is 11/5. Find the ratio of shaded region
to the area of shaded region
Solution
Note that the apex of the angle is not on the parallel lines. Set up a coordinate proof.
Let the set of parallel lines be perpendicular to the x-axis, such that they cross it at
. The base of region
is on the line
. The bigger base of region
is on the line
.
Cutting the angle by half don't change the problem. After the cut, the top side of the angle will be
; the bottom side will be x-axis.
Since the area of the triangle is equal to
,
Solve this to find that
.
By a similar method,
is
.
See also
| 2006 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 6 |
Followed by Problem 8 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||