Difference between revisions of "2012 JBMO Problems/Problem 2"
(Created page with "== Section 2== Let the circles <math>k_1</math> and <math>k_2</math> intersect at two points <math>A</math> and <math>B</math>, and let <math>t</math> be a common tangent of...") |
(→Solution) |
||
| Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
| + | <asy> | ||
| + | size(15cm,0); | ||
| + | draw((0,0)--(0,2)--(4,2)--(4,-3)--(0,0)); | ||
| + | draw((-1,2)--(9,2)); | ||
| + | draw((0,0)--(2,2)); | ||
| + | draw((2,2)--(1,1)); | ||
| + | draw(circle((0,1),1)); | ||
| + | draw(circle((4,-3),5)); | ||
| + | dot((0,0)); | ||
| + | dot((0,2)); | ||
| + | dot((2,2)); | ||
| + | dot((4,2)); | ||
| + | dot((4,-3)); | ||
| + | dot((1,1)); | ||
| + | dot((0,1)); | ||
| + | label("A",(0,0),NW); | ||
| + | label("B",(1,1),NW); | ||
| + | label("M",(0,2),N); | ||
| + | label("N",(4,2),N); | ||
| + | label("$O_1$",(0,1),NW); | ||
| + | label("$O_2$",(4,-3),NE); | ||
| + | label("$k_1$",(-0.7,1.7),NW); | ||
| + | label("$k_2$",(7.6,0.46),NE); | ||
| + | label("$t$",(7.5,2),N); | ||
| + | label("P",(2,2),N); | ||
| + | </asy> | ||
| + | |||
| + | Let <math>O_1</math> and <math>O-2</math> be the centers of circles <math>k_1</math> and <math>k_2</math> respectively. | ||
Revision as of 21:16, 22 December 2020
Section 2
Let the circles
and
intersect at two points
and
, and let
be a common tangent of
and
that touches
and
at
and
respectively. If
and
, evaluate the angle
.
Solution
Let
and
be the centers of circles
and
respectively.