Difference between revisions of "2021 AIME II Problems/Problem 14"
MRENTHUSIASM (talk | contribs) m (→See also: also -> Also Case consistency) |
MRENTHUSIASM (talk | contribs) m (Rearranged the solutions based on education values. I pushed the guessing solution to the end. Also, since spiral similarity is a bit rare, I made it Solution 2. I did not edit any content of the solution. If anyone is unhappy with it, please PM me.) |
||
Line 8: | Line 8: | ||
==Solution 1== | ==Solution 1== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
In this solution, all angle measures are in degrees. | In this solution, all angle measures are in degrees. | ||
Line 45: | Line 40: | ||
~MRENTHUSIASM (Reconstruction) | ~MRENTHUSIASM (Reconstruction) | ||
− | ==Solution | + | ==Solution 2== |
− | + | Let <math>M</math> be the midpoint of <math>BC</math>. Because <math>\angle{OAX}=\angle{OGX}=\angle{OGY}=\angle{OMY}=90^o</math>, <math>AXOG</math> and <math>OMYG</math> are cyclic, so <math>O</math> is the center of the spiral similarity sending <math>AM</math> to <math>XY</math>, and <math>\angle{XOY}=\angle{AOM}</math>. Because <math>\angle{AOM}=2\angle{BCA}+\angle{BAC}</math>, it's easy to get <math>\frac{585}{7} \implies \boxed{592}</math> from here. | |
+ | |||
+ | ~Lcz | ||
− | ==Solution | + | ==Solution 3 (Easy and Simple)== |
Firstly, let <math>M</math> be the midpoint of <math>BC</math>. Then, <math>\angle OMB = 90^o</math>. Now, note that since <math>\angle OGX = \angle XAO = 90^o</math>, quadrilateral <math>AGOX</math> is cyclic. Also, because <math>\angle OMY + \angle OGY = 180^o</math>, <math>OMYG</math> is also cyclic. Now, we define some variables: let <math>\alpha</math> be the constant such that <math>\angle ABC = 13\alpha, \angle ACB = 2\alpha, </math> and <math>\angle XOY = 17\alpha</math>. Also, let <math>\beta = \angle OMG = \angle OYG</math> and <math>\theta = \angle OXG = \angle OAG</math> (due to the fact that <math>AGOX</math> and <math>OMYG</math> are cyclic). Then, <cmath>\angle XOY = 180 - \beta - \theta = 17\alpha \implies \beta + \theta = 180 - 17\alpha.</cmath> Now, because <math>AX</math> is tangent to the circumcircle at <math>A</math>, <math>\angle XAC = \angle CBA = 13\alpha</math>, and <math>\angle CAO = \angle OAX - \angle CAX = 90 - 13\alpha</math>. Finally, notice that <math>\angle AMB = \angle OMB - \angle OMG = 90 - \beta</math>. Then, <cmath>\angle BAM = 180 - \angle ABC - \angle AMB = 180 - 13\alpha - (90 - \beta) = 90 + \beta - 13\alpha.</cmath> Thus, <cmath>\angle BAC = \angle BAM + \angle MAO + \angle OAC = 90 + \beta - 13\alpha + \theta + 90 - 13\alpha = 180 - 26\alpha + (\beta + \theta),</cmath> and <cmath>180 = \angle BAC + 13\alpha + 2\alpha = 180 - 11\alpha + \beta + \theta \implies \beta + \theta = 11\alpha.</cmath> However, from before, <math>\beta+\theta = 180 - 17 \alpha</math>, so <math>11 \alpha = 180 - 17 \alpha \implies 180 = 28 \alpha \implies \alpha = \frac{180}{28}</math>. To finish the problem, we simply compute <cmath>\angle BAC = 180 - 15 \alpha = 180 \cdot \left(1 - \frac{15}{28}\right) = 180 \cdot \frac{13}{28} = \frac{585}{7},</cmath> so our final answer is <math>585+7=\boxed{592}</math>. | Firstly, let <math>M</math> be the midpoint of <math>BC</math>. Then, <math>\angle OMB = 90^o</math>. Now, note that since <math>\angle OGX = \angle XAO = 90^o</math>, quadrilateral <math>AGOX</math> is cyclic. Also, because <math>\angle OMY + \angle OGY = 180^o</math>, <math>OMYG</math> is also cyclic. Now, we define some variables: let <math>\alpha</math> be the constant such that <math>\angle ABC = 13\alpha, \angle ACB = 2\alpha, </math> and <math>\angle XOY = 17\alpha</math>. Also, let <math>\beta = \angle OMG = \angle OYG</math> and <math>\theta = \angle OXG = \angle OAG</math> (due to the fact that <math>AGOX</math> and <math>OMYG</math> are cyclic). Then, <cmath>\angle XOY = 180 - \beta - \theta = 17\alpha \implies \beta + \theta = 180 - 17\alpha.</cmath> Now, because <math>AX</math> is tangent to the circumcircle at <math>A</math>, <math>\angle XAC = \angle CBA = 13\alpha</math>, and <math>\angle CAO = \angle OAX - \angle CAX = 90 - 13\alpha</math>. Finally, notice that <math>\angle AMB = \angle OMB - \angle OMG = 90 - \beta</math>. Then, <cmath>\angle BAM = 180 - \angle ABC - \angle AMB = 180 - 13\alpha - (90 - \beta) = 90 + \beta - 13\alpha.</cmath> Thus, <cmath>\angle BAC = \angle BAM + \angle MAO + \angle OAC = 90 + \beta - 13\alpha + \theta + 90 - 13\alpha = 180 - 26\alpha + (\beta + \theta),</cmath> and <cmath>180 = \angle BAC + 13\alpha + 2\alpha = 180 - 11\alpha + \beta + \theta \implies \beta + \theta = 11\alpha.</cmath> However, from before, <math>\beta+\theta = 180 - 17 \alpha</math>, so <math>11 \alpha = 180 - 17 \alpha \implies 180 = 28 \alpha \implies \alpha = \frac{180}{28}</math>. To finish the problem, we simply compute <cmath>\angle BAC = 180 - 15 \alpha = 180 \cdot \left(1 - \frac{15}{28}\right) = 180 \cdot \frac{13}{28} = \frac{585}{7},</cmath> so our final answer is <math>585+7=\boxed{592}</math>. | ||
~advanture | ~advanture | ||
+ | |||
+ | ==Solution 4 (Guessing in the Last 3 Minutes, Unreliable)== | ||
+ | Notice that <math>\triangle ABC</math> looks isosceles, so we assume it's isosceles. Then, let <math>\angle BAC = \angle ABC = 13x</math> and <math>\angle BCA = 2x.</math> Taking the sum of the angles in the triangle gives <math>28x=180,</math> so <math>13x = \frac{13}{28} \cdot 180 = \frac{585}{7}</math> so the answer is <math>\boxed{592}.</math> | ||
==Video Solution 1== | ==Video Solution 1== |
Revision as of 05:41, 3 July 2021
Contents
Problem
Let be an acute triangle with circumcenter
and centroid
. Let
be the intersection of the line tangent to the circumcircle of
at
and the line perpendicular to
at
. Let
be the intersection of lines
and
. Given that the measures of
and
are in the ratio
the degree measure of
can be written as
where
and
are relatively prime positive integers. Find
.
Diagram
~MRENTHUSIASM (by Geometry Expressions)
Solution 1
In this solution, all angle measures are in degrees.
Let be the midpoint of
so that
and
are collinear. Let
and
Note that:
- Since
quadrilateral
is cyclic by the Converse of the Inscribed Angle Theorem.
It follows that
as they share the same intercepted arc
- Since
quadrilateral
is cyclic by the supplementary opposite angles.
It follows that
as they share the same intercepted arc
Together, we conclude that by AA, so
Next, we express in terms of
By angle addition, we have
Substituting back gives
from which
For the sum of the interior angles of we get
Finally, we obtain
from which the answer is
~Constance-variance (Fundamental Logic)
~MRENTHUSIASM (Reconstruction)
Solution 2
Let be the midpoint of
. Because
,
and
are cyclic, so
is the center of the spiral similarity sending
to
, and
. Because
, it's easy to get
from here.
~Lcz
Solution 3 (Easy and Simple)
Firstly, let be the midpoint of
. Then,
. Now, note that since
, quadrilateral
is cyclic. Also, because
,
is also cyclic. Now, we define some variables: let
be the constant such that
and
. Also, let
and
(due to the fact that
and
are cyclic). Then,
Now, because
is tangent to the circumcircle at
,
, and
. Finally, notice that
. Then,
Thus,
and
However, from before,
, so
. To finish the problem, we simply compute
so our final answer is
.
~advanture
Solution 4 (Guessing in the Last 3 Minutes, Unreliable)
Notice that looks isosceles, so we assume it's isosceles. Then, let
and
Taking the sum of the angles in the triangle gives
so
so the answer is
Video Solution 1
https://www.youtube.com/watch?v=zFH1Z7Ydq1s
Video Solution 2
https://www.youtube.com/watch?v=7Bxr2h4btWo
~Osman Nal
See Also
2021 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.