Difference between revisions of "2010 AIME I Problems/Problem 3"
(Rewrote Solution 4 because it was incomplete.) |
Mathfun1000 (talk | contribs) m |
||
| Line 4: | Line 4: | ||
== Solution 1 == | == Solution 1 == | ||
Substitute <math>y = \frac34x</math> into <math>x^y = y^x</math> and solve. | Substitute <math>y = \frac34x</math> into <math>x^y = y^x</math> and solve. | ||
| − | <cmath>x^{\frac34x} = (\frac34x)^x</cmath> | + | <cmath>x^{\frac34x} = \left(\frac34x\right)^x</cmath> |
| − | <cmath>x^{\frac34x} = (\frac34)^x \cdot x^x</cmath> | + | <cmath>x^{\frac34x} = \left(\frac34\right)^x \cdot x^x</cmath> |
| − | <cmath>x^{-\frac14x} = (\frac34)^x</cmath> | + | <cmath>x^{-\frac14x} = \left(\frac34\right)^x</cmath> |
<cmath>x^{-\frac14} = \frac34</cmath> | <cmath>x^{-\frac14} = \frac34</cmath> | ||
<cmath>x = \frac{256}{81}</cmath> | <cmath>x = \frac{256}{81}</cmath> | ||
Latest revision as of 21:07, 17 December 2021
Contents
Problem
Suppose that
and
. The quantity
can be expressed as a rational number
, where
and
are relatively prime positive integers. Find
.
Solution 1
Substitute
into
and solve.
Solution 2
We solve in general using
instead of
. Substituting
, we have:
Dividing by
, we get
.
Taking the
th root,
, or
.
In the case
,
,
,
, yielding an answer of
.
Solution 3
Taking the logarithm base
of both sides, we arrive with:
Where the last two simplifications were made since
. Then,
Then,
, and thus:
Solution 4 (another version of Solution 3)
Taking the logarithm base
of both sides, we arrive with:
Now we proceed by the logarithm rule
. The equation becomes:
Then find
as in solution 3, and we get
.
See Also
| 2010 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.