Difference between revisions of "2020 AMC 10B Problems/Problem 22"
m (→Solution 6 (Modular Arithmetic)) |
|||
| Line 23: | Line 23: | ||
Since the first half divides cleanly as shown earlier, the remainder must be <math>\boxed{\textbf{(D) }201}</math> ~quacker88 | Since the first half divides cleanly as shown earlier, the remainder must be <math>\boxed{\textbf{(D) }201}</math> ~quacker88 | ||
| − | ==Solution 2 | + | ==Solution 2 (MAA Original Solution)== |
| − | |||
| − | |||
| − | |||
<cmath> | <cmath> | ||
| Line 40: | Line 37: | ||
(Source: https://artofproblemsolving.com/community/c5h2001950p14000817) | (Source: https://artofproblemsolving.com/community/c5h2001950p14000817) | ||
| − | ==Solution | + | ==Solution 3 == |
We let <cmath>x = 2^{50}</cmath> and <cmath>2^{202} + 202 = 4x^{4} + 202</cmath>. | We let <cmath>x = 2^{50}</cmath> and <cmath>2^{202} + 202 = 4x^{4} + 202</cmath>. | ||
Next we write <cmath>2^{101} + 2^{51} + 1 = 2x^{2} + 2x + 1</cmath>. | Next we write <cmath>2^{101} + 2^{51} + 1 = 2x^{2} + 2x + 1</cmath>. | ||
We know that <cmath>4x^{4} + 1 = (2x^{2} + 2x + 1)(2x^{2} - 2x + 1)</cmath> by the Sophie Germain identity so to find <cmath>4x^{4} + 202,</cmath> we find that <cmath>4x^{4} + 202 = 4x^{4} + 201 + 1</cmath> which shows that the remainder is <math>\boxed{\textbf{(D) } 201}</math> | We know that <cmath>4x^{4} + 1 = (2x^{2} + 2x + 1)(2x^{2} - 2x + 1)</cmath> by the Sophie Germain identity so to find <cmath>4x^{4} + 202,</cmath> we find that <cmath>4x^{4} + 202 = 4x^{4} + 201 + 1</cmath> which shows that the remainder is <math>\boxed{\textbf{(D) } 201}</math> | ||
| − | ==Solution | + | ==Solution 4 == |
We let <math>x=2^{50.5}</math>. That means <math>2^{202}+202=x^{4}+202</math> and <math>2^{101}+2^{51}+1=x^{2}+x\sqrt{2}+1</math>. Then, we simply do polynomial division, and find that the remainder is <math>\boxed{\textbf{(D) } 201}</math>. | We let <math>x=2^{50.5}</math>. That means <math>2^{202}+202=x^{4}+202</math> and <math>2^{101}+2^{51}+1=x^{2}+x\sqrt{2}+1</math>. Then, we simply do polynomial division, and find that the remainder is <math>\boxed{\textbf{(D) } 201}</math>. | ||
| − | ==Solution | + | ==Solution 5 (Modular Arithmetic)== |
Let <math>n=2^{101}+2^{51}+1</math>. Then, | Let <math>n=2^{101}+2^{51}+1</math>. Then, | ||
Revision as of 19:43, 31 October 2021
Contents
Problem
What is the remainder when
is divided by
?
Solution 1
Let
. We are now looking for the remainder of
.
We could proceed with polynomial division, but the denominator looks awfully similar to the Sophie Germain Identity, which states that
Let's use the identity, with
and
, so we have
Rearranging, we can see that this is exactly what we need:
So
Since the first half divides cleanly as shown earlier, the remainder must be
~quacker88
Solution 2 (MAA Original Solution)
Thus, we see that the remainder is surely
(Source: https://artofproblemsolving.com/community/c5h2001950p14000817)
Solution 3
We let
and
.
Next we write
.
We know that
by the Sophie Germain identity so to find
we find that
which shows that the remainder is
Solution 4
We let
. That means
and
. Then, we simply do polynomial division, and find that the remainder is
.
Solution 5 (Modular Arithmetic)
Let
. Then,
.
Thus, the remainder is
.
~ Leo.Euler
~ (edited by asops)
Video Solutions
Video Solution 1 by Mathematical Dexterity (2 min)
https://www.youtube.com/watch?v=lLWURnmpPQA
Video Solution 2 by The Beauty Of Math
Video Solution 3
https://www.youtube.com/watch?v=Qs6UnryIAI8&list=PLLCzevlMcsWNcTZEaxHe8VaccrhubDOlQ&index=9&t=0s ~ MathEx
Video Solution 4 Using Sophie Germain's Identity
https://youtu.be/ba6w1OhXqOQ?t=5155
~ pi_is_3.14
See Also
| 2020 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 21 |
Followed by Problem 23 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.