Difference between revisions of "1989 AHSME Problems/Problem 14"

(Solution)
Line 6: Line 6:
 
<math> \mathrm{(A) \csc 5 } \qquad \mathrm{(B) \csc 10 } \qquad \mathrm{(C) \sec 5 } \qquad \mathrm{(D) \sec 10 } \qquad \mathrm{(E) \sin 15 }  </math>
 
<math> \mathrm{(A) \csc 5 } \qquad \mathrm{(B) \csc 10 } \qquad \mathrm{(C) \sec 5 } \qquad \mathrm{(D) \sec 10 } \qquad \mathrm{(E) \sin 15 }  </math>
  
== Solution ==
+
== Solution 1 ==
  
We have <cmath>\cot 10 +\tan 5=\frac{\cos 10}{\sin 10}+\frac{\sin 5}{\cos 5}=\frac{\cos10\cos5+\sin10\sin5}{\sin10\cos 5}=\frac{\cos(10-5)}{\sin10\cos5}=\frac{\cos5}{\sin10\cos5}=\csc10</cmath>
+
We have <cmath>\cot 10 +\tan 5=\frac{\cos 10}{\sin 10}+\frac{\sin 5}{\cos 5}=\frac{\cos10\cos5+\sin10\sin5}{\sin10\cos 5}=\frac{\cos(10-5)}{\sin10\cos5}=\frac{\cos5}{\sin10\cos5}=\boxed{(\textbf{B})\csc 10}</cmath>
 +
 
 +
== Solution 2 ==
 +
 
 +
<math>\cot 10 + \tan 5 = \frac{1}{\tan 10} + \tan 5 = \frac{1}{\frac{2 \tan 5}{1 - \tan^2 5}} + \tan 5 = \frac{1 - \tan^2 5}{2 \tan 5} + \tan 5 = \frac{1 - \tan^2 5}{2 \tan 5} + \frac{2 \tan^2 5}{2 \tan 5} </math>
 +
 
 +
<math>= \frac{1 + \tan^2 5}{2 \tan 5} = \frac{\sec^2 5}{2 \tan 5} = \frac{1}{2} \sec^2 5 \cot 5 = \frac{1}{2} \cdot \frac{1}{\cos^2 5} \cdot \frac {\cos 5}{\sin 5} = \frac{1}{2 \sin 5 \cos 5} = \frac{1}{\sin 10} = \boxed{(\textbf{B})\csc 10}</math>.
 +
 
 +
-j314andrews
  
 
== See also ==
 
== See also ==

Revision as of 01:41, 11 July 2025

Problem

$\cot 10+\tan 5=$


$\mathrm{(A) \csc 5 } \qquad \mathrm{(B) \csc 10 } \qquad \mathrm{(C) \sec 5 } \qquad \mathrm{(D) \sec 10 } \qquad \mathrm{(E) \sin 15 }$

Solution 1

We have \[\cot 10 +\tan 5=\frac{\cos 10}{\sin 10}+\frac{\sin 5}{\cos 5}=\frac{\cos10\cos5+\sin10\sin5}{\sin10\cos 5}=\frac{\cos(10-5)}{\sin10\cos5}=\frac{\cos5}{\sin10\cos5}=\boxed{(\textbf{B})\csc 10}\]

Solution 2

$\cot 10 + \tan 5 = \frac{1}{\tan 10} + \tan 5 = \frac{1}{\frac{2 \tan 5}{1 - \tan^2 5}} + \tan 5 = \frac{1 - \tan^2 5}{2 \tan 5} + \tan 5 = \frac{1 - \tan^2 5}{2 \tan 5} + \frac{2 \tan^2 5}{2 \tan 5}$

$= \frac{1 + \tan^2 5}{2 \tan 5} = \frac{\sec^2 5}{2 \tan 5} = \frac{1}{2} \sec^2 5 \cot 5 = \frac{1}{2} \cdot \frac{1}{\cos^2 5} \cdot \frac {\cos 5}{\sin 5} = \frac{1}{2 \sin 5 \cos 5} = \frac{1}{\sin 10} = \boxed{(\textbf{B})\csc 10}$.

-j314andrews

See also

1989 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png