Difference between revisions of "2005 AMC 10A Problems/Problem 13"

(Solution 2)
(Improved formatting/explanations and removed Solution 2, since it's really the same as Solution 1)
Line 2: Line 2:
 
How many positive integers <math>n</math> satisfy the following condition:
 
How many positive integers <math>n</math> satisfy the following condition:
  
<math> (130n)^{50} > n^{100} > 2^{200}\ ?</math>
+
<cmath>\left(130n\right)^{50} > n^{100} > 2^{200} \ \text{?}</cmath>
  
<math> \textbf{(A) } 0\qquad \textbf{(B) } 7\qquad \textbf{(C) } 12\qquad \textbf{(D) } 65\qquad \textbf{(E) } 125 </math>
+
<math>
 +
\textbf{(A) } 0\qquad \textbf{(B) } 7\qquad \textbf{(C) } 12\qquad \textbf{(D) } 65\qquad \textbf{(E) } 125
 +
</math>
  
==Solution==
+
==Solution 1==
We're given <math> (130n)^{50} > n^{100} > 2^{200} </math>, so
+
Since <math>n > 0</math>, all <math>3</math> terms of the inequality are positive, so we may take the <math>50</math>th root, yielding
  
<math> \sqrt[50]{(130n)^{50}} > \sqrt[50]{n^{100}} > \sqrt[50]{2^{200}} </math> (because all terms are positive) and thus
+
<cmath>\begin{align*}&\sqrt[50]{(130n)^{50}} > \sqrt[50]{n^{100}} > \sqrt[50]{2^{200}} \\ \iff &130n > n^2 > 2^4 \\ \iff &130n > n^2 > 16.\end{align*}</cmath>
  
<math> 130n > n^2 > 2^4 </math>  
+
Solving each part separately, while noting that <math>n > 0</math>, therefore gives <math>n^2 > 16 \iff n > 4</math> and <math>130n > n^2 \iff n < 130</math>.
  
<math> 130n > n^2 > 16 </math>
+
Hence the solution is <math>4 < n < 130</math>, and therefore the answer is the number of positive integers in the open interval <math>(4,130)</math>, which is <math>129-5+1 = \boxed{\textbf{(E) } 125}</math>.
 
 
Solving each part separately:
 
 
 
<math> n^2 > 16 \Longrightarrow n > 4 </math>
 
 
 
<math> 130n > n^2 \Longrightarrow 130 > n </math>
 
 
 
So <math> 4 < n < 130 </math>.
 
 
 
Therefore the answer is the number of [[positive integer]]s over the interval <math> (4,130) </math> which is <math>129-5+1 = \boxed{\textbf{(E) }125}</math>
 
 
 
 
 
==Solution 2==
 
We're given <math>\left(130n\right)^{50}>n^{100}>2^{200}</math>.
 
 
 
Alternatively to solution 1, first deal with the first half: <math>\left(130n\right)^{50}>\left(n^{2}\right)^{50}</math>. Because the exponents are equal, we can ignore them and solve for <math>n</math>: <math>130n>n^{2}</math>, or <math>n<130</math>.
 
 
 
The second half: <math>n^{100}>2^{200}</math>, or <math>n^{100}>4^{100}</math>, which means <math>n>4</math>.
 
 
 
Therefore <math>4<n<130</math> and <math>n=\left\{5,\ 6,\ 7,\ \cdots ,\ 128,\ 129\right\}</math> which contains the same number of elements as <math>\left\{1,\ 2,\ 3,\ \cdots ,\ 124,\ 125\right\}</math> which clearly contains <math>125</math> values or choice <math>\boxed{\textbf{(E) } 125}</math>.
 
 
 
~JH. L
 
  
 
==See also==
 
==See also==

Revision as of 17:42, 1 July 2025

Problem

How many positive integers $n$ satisfy the following condition:

\[\left(130n\right)^{50} > n^{100} > 2^{200} \ \text{?}\]

$\textbf{(A) } 0\qquad \textbf{(B) } 7\qquad \textbf{(C) } 12\qquad \textbf{(D) } 65\qquad \textbf{(E) } 125$

Solution 1

Since $n > 0$, all $3$ terms of the inequality are positive, so we may take the $50$th root, yielding

\begin{align*}&\sqrt[50]{(130n)^{50}} > \sqrt[50]{n^{100}} > \sqrt[50]{2^{200}} \\ \iff &130n > n^2 > 2^4 \\ \iff &130n > n^2 > 16.\end{align*}

Solving each part separately, while noting that $n > 0$, therefore gives $n^2 > 16 \iff n > 4$ and $130n > n^2 \iff n < 130$.

Hence the solution is $4 < n < 130$, and therefore the answer is the number of positive integers in the open interval $(4,130)$, which is $129-5+1 = \boxed{\textbf{(E) } 125}$.

See also

2005 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png