Difference between revisions of "2002 AIME II Problems/Problem 6"
(→Solution 1) |
(→Solution 1) |
||
Line 5: | Line 5: | ||
We know that <math>\frac{1}{n^2 - 4} = \frac{1}{(n+2)(n-2)}</math>. We can use the process of fractional decomposition to split this into two fractions: <math>\frac{1}{(n+2)(n-2)} = \frac{A}{(n+2)} + \frac{B}{(n-2)}</math> for some A and B. | We know that <math>\frac{1}{n^2 - 4} = \frac{1}{(n+2)(n-2)}</math>. We can use the process of fractional decomposition to split this into two fractions: <math>\frac{1}{(n+2)(n-2)} = \frac{A}{(n+2)} + \frac{B}{(n-2)}</math> for some A and B. | ||
− | Solving for A and B gives <math>1 = (n-2)A + (n+2)B</math> or <math>1 = n(A+B)+ 2(B-A)</math>. Since there is no n term on the left hand side, <math> A+B=0</math> and by inspection <math>1 = 2(B-A)</math>. Solving yields <math> A=\frac{1}{4}, B=\frac{ | + | Solving for A and B gives <math>1 = (n-2)A + (n+2)B</math> or <math>1 = n(A+B)+ 2(B-A)</math>. Since there is no n term on the left hand side, <math> A+B=0</math> and by inspection <math>1 = 2(B-A)</math>. Solving yields <math> A=\frac{-1}{4}, B=\frac{1}{4}</math> |
Therefore, <math>\frac{1}{n^2-4} = \frac{1}{(n+2)(n-2)} = \frac{ \frac{1}{4} }{(n-2)} + \frac{ \frac{-1}{4} }{(n+2)} = \frac{1}{4} \left( \frac{1}{n-2} - \frac{1}{n+2} \right)</math>. | Therefore, <math>\frac{1}{n^2-4} = \frac{1}{(n+2)(n-2)} = \frac{ \frac{1}{4} }{(n-2)} + \frac{ \frac{-1}{4} }{(n+2)} = \frac{1}{4} \left( \frac{1}{n-2} - \frac{1}{n+2} \right)</math>. |
Latest revision as of 21:47, 28 March 2025
Contents
Problem
Find the integer that is closest to .
Solution 1
We know that . We can use the process of fractional decomposition to split this into two fractions:
for some A and B.
Solving for A and B gives or
. Since there is no n term on the left hand side,
and by inspection
. Solving yields
Therefore, .
And so, .
This telescopes into:
The small fractional terms are not enough to bring lower than
so the answer is
Solution 2
Using the fact that or by partial fraction decomposition, we both obtained
. The denominators of the positive terms are
, while the negative ones are
. Hence we are left with
. We can simply ignore the last
terms, and we get it is approximately
. Computing
which is about
and moving the decimal point three times, we get that the answer is
See also
2002 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.