Difference between revisions of "User:Temperal/The Problem Solver's Resource11"

(Mauclarin's Inequality: spelling)
(revamp)
Line 5: Line 5:
 
|-  
 
|-  
 
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 11}}
 
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 11}}
==<span style="font-size:20px; color: blue;">Advanced Number Theory</span>==
+
==<span style="font-size:20px; color: blue;">Inequalities</span>==
These are Olympiad-level theorems and properties of numbers that are routinely used on the IMO and other such competitions.
+
My favorite topic, saved for last.
 +
===Trivial Inequality===
 +
For any real <math>x</math>, <math>x^2\ge 0</math>, with equality iff <math>x=0</math>.
 +
===Arithmetic Mean/Geometric Mean Inequality===
 +
For any set of real numbers <math>S</math>, <math>\frac{S_1+S_2+S_3....+S_{k-1}+S_k}{k}\ge \sqrt[k]{S_1\cdot S_2 \cdot S_3....\cdot S_{k-1}\cdot S_k}</math> with equality iff <math>S_1=S_2=S_3...=S_{k-1}=S_k</math>.
 +
 
 +
 
 +
===Cauchy-Schwarz Inequality===
 +
 
 +
For any real numbers <math>a_1,a_2,...,a_n</math> and <math>b_1,b_2,...,b_n</math>, the following holds:
 +
 
 +
<math>(\sum a_i^2)(\sum b_i^2) \ge (\sum a_ib_i)^2</math>
 +
 
 +
====Cauchy-Schwarz Variation====
 +
 
 +
For any real numbers <math>a_1,a_2,...,a_n</math> and positive real numbers <math>b_1,b_2,...,b_n</math>, the following holds:
 +
 
 +
<math>\sum\left({{a_i^2}\over{b_i}}\right) \ge {{\sum a_i^2}\over{\sum b_i}}</math>.
 +
===Power Mean Inequality===
 +
 
 +
Take a set of functions <math>m_j(a) = \left({\frac{\sum a_i^j}{n}}\right)^{1/j}</math>.
 +
 
 +
Note that <math>m_0</math> does not exist. The geometric mean is <math>m_0 = \lim_{k \to 0} m_k</math>.
 +
For non-negative real numbers <math>a_1,a_2,\ldots,a_n</math>, the following holds:
 +
 
 +
<math>m_x \le m_y</math> for reals <math>x<y</math>.
 +
 
 +
, if <math>m_2</math> is the quadratic mean, <math>m_1</math> is the arithmetic mean, <math>m_0</math> the geometric mean, and <math>m_{-1}</math> the harmonic mean.
 +
 
 +
===Chebyshev's Inequality===
 +
 
 +
Given real numbers <math>a_1 \ge a_2 \ge ... \ge a_n \ge 0</math> and <math>b_1 \ge b_2 \ge ... \ge b_n</math>, we have
 +
 
 +
<math>{\frac{\sum a_ib_i}{n}} \ge {\frac{\sum a_i}{n}}{\frac{\sum b_i}{n}}</math>.
 +
 
 +
===Minkowski's Inequality===
 +
 
 +
Given real numbers <math>a_1,a_2,...,a_n</math> and <math>b_1,b_2,\ldots,b_n</math>, the following holds:
 +
 
 +
<math>\sqrt{\sum a_i^2} + \sqrt{\sum b_i^2} \ge \sqrt{\sum (a_i+b_i)^2}</math>
 +
 
 +
===Nesbitt's Inequality===
 +
 
 +
For all positive real numbers <math>a</math>, <math>b</math> and <math>c</math>, the following holds:
 +
 
 +
<math>{\frac{a}{b+c}} + {\frac{b}{c+a}} + {\frac{c}{a+b}} \ge {\frac{3}{2}}</math>.
 +
 
 +
===Schur's inequality===
 +
 
 +
Given positive real numbers <math>a,b,c</math> and real <math>r</math>, the following holds:
 +
 
 +
<math>a^r(a-b)(a-c)+b^r(b-a)(b-c)+c^r(c-a)(c-b)\ge 0</math>.
 +
 
 
===Jensen's Inequality===
 
===Jensen's Inequality===
 
For a convex function <math>f(x)</math> and real numbers <math>a_1,a_2,a_3,a_4\ldots,a_n</math> and <math>x_1,x_2,x_3,x_4\ldots,x_n</math>, the following holds:
 
For a convex function <math>f(x)</math> and real numbers <math>a_1,a_2,a_3,a_4\ldots,a_n</math> and <math>x_1,x_2,x_3,x_4\ldots,x_n</math>, the following holds:

Revision as of 12:08, 23 November 2007



The Problem Solver's Resource
Introduction Other Tips and Tricks Methods of Proof You are currently viewing page 11.

Inequalities

My favorite topic, saved for last.

Trivial Inequality

For any real $x$, $x^2\ge 0$, with equality iff $x=0$.

Arithmetic Mean/Geometric Mean Inequality

For any set of real numbers $S$, $\frac{S_1+S_2+S_3....+S_{k-1}+S_k}{k}\ge \sqrt[k]{S_1\cdot S_2 \cdot S_3....\cdot S_{k-1}\cdot S_k}$ with equality iff $S_1=S_2=S_3...=S_{k-1}=S_k$.


Cauchy-Schwarz Inequality

For any real numbers $a_1,a_2,...,a_n$ and $b_1,b_2,...,b_n$, the following holds:

$(\sum a_i^2)(\sum b_i^2) \ge (\sum a_ib_i)^2$

Cauchy-Schwarz Variation

For any real numbers $a_1,a_2,...,a_n$ and positive real numbers $b_1,b_2,...,b_n$, the following holds:

$\sum\left({{a_i^2}\over{b_i}}\right) \ge {{\sum a_i^2}\over{\sum b_i}}$.

Power Mean Inequality

Take a set of functions $m_j(a) = \left({\frac{\sum a_i^j}{n}}\right)^{1/j}$.

Note that $m_0$ does not exist. The geometric mean is $m_0 = \lim_{k \to 0} m_k$. For non-negative real numbers $a_1,a_2,\ldots,a_n$, the following holds:

$m_x \le m_y$ for reals $x<y$.

, if $m_2$ is the quadratic mean, $m_1$ is the arithmetic mean, $m_0$ the geometric mean, and $m_{-1}$ the harmonic mean.

Chebyshev's Inequality

Given real numbers $a_1 \ge a_2 \ge ... \ge a_n \ge 0$ and $b_1 \ge b_2 \ge ... \ge b_n$, we have

${\frac{\sum a_ib_i}{n}} \ge {\frac{\sum a_i}{n}}{\frac{\sum b_i}{n}}$.

Minkowski's Inequality

Given real numbers $a_1,a_2,...,a_n$ and $b_1,b_2,\ldots,b_n$, the following holds:

$\sqrt{\sum a_i^2} + \sqrt{\sum b_i^2} \ge \sqrt{\sum (a_i+b_i)^2}$

Nesbitt's Inequality

For all positive real numbers $a$, $b$ and $c$, the following holds:

${\frac{a}{b+c}} + {\frac{b}{c+a}} + {\frac{c}{a+b}} \ge {\frac{3}{2}}$.

Schur's inequality

Given positive real numbers $a,b,c$ and real $r$, the following holds:

$a^r(a-b)(a-c)+b^r(b-a)(b-c)+c^r(c-a)(c-b)\ge 0$.

Jensen's Inequality

For a convex function $f(x)$ and real numbers $a_1,a_2,a_3,a_4\ldots,a_n$ and $x_1,x_2,x_3,x_4\ldots,x_n$, the following holds:

\[\sum_{i=1}^{n}a_i\cdot f(x_i)\ge f(\sum_{i=1}^{n}a_i\cdot x_i)\]

Holder's Inequality

For positive real numbers $a_{i_{j}}, 1\le i\le m, 1\le j\le n$, the following holds:

\[\prod_{i=1}^{m}\left(\sum_{j=1}^{n}a_{i_{j}}\right)\ge\left(\sum_{j=1}^{n}\sqrt[m]{\prod_{i=1}^{m}a_{i_{j}}}\right)^{m}\]

Muirhead's Inequality

For a sequence $A$ that majorizes a sequence $B$, then given a set of positive integers $x_1,x_2,\ldots,x_n$, the following holds:

\[\sum_{sym} {x_1}^{a_1}{x_2}^{a_2}\ldots {x_n}^{a_n}\geq \sum_{sym} {x_1}^{b_1}{x_2}^{b_2}\cdots {x_n}^{b_n}\]

Rearrangement Inequality

For any multi sets ${a_1,a_2,a_3\ldots,a_n}$ and ${b_1,b_2,b_3\ldots,b_n}$, $a_1b_1+a_2b_2+\ldots+a_nb_n$ is maximized when $a_k$ is greater than or equal to exactly $i$ of the other members of $A$, then $b_k$ is also greater than or equal to exactly $i$ of the other members of $B$.

Newton's Inequality

For non-negative real numbers $x_1,x_2,x_3\ldots,x_n$ and $0 < k < n$ the following holds:

\[d_k^2 \ge d_{k-1}d_{k+1}\],

with equality exactly iff all $x_i$ are equivalent.

MacLaurin's Inequality

For non-negative real numbers $x_1,x_2,x_3 \ldots, x_n$, and $d_1,d_2,d_3 \ldots, d_n$ such that \[d_k = \frac{\sum_{ 1\leq i_1 < i_2 < \cdots < i_k \leq n}x_{i_1} x_{i_2} \cdots x_{i_k}}{{n \choose k}}\], for $k\subset [1,n]$ the following holds:

\[d_1 \ge \sqrt[2]{d_2} \ge \sqrt[3]{d_3}\ldots \ge \sqrt[n]{d_n}\]

with equality iff all $x_i$ are equivalent.

Back to page 10 | Last page (But also see the tips and tricks page, and the competition!