Difference between revisions of "2022 SSMO Tiebreaker Round Problems"

(Created page with "==Problem 1== For all positive integers <math>n,</math> let <math>S(n)</math> denote the least positive integer <math>x</math> such that <math>n+x</math> is a palindrome. Fin...")
 
 
Line 1: Line 1:
 
==Problem 1==
 
==Problem 1==
  
For all positive integers <math>n,</math> let <math>S(n)</math> denote the least positive integer <math>x</math> such that <math>n+x</math> is a palindrome. Find the value of <math>\displaystyle{\sum_{n=1}^{100}S(n)}.</math>
+
For all positive integers <math>n,</math> let <math>S(n)</math> denote the least positive integer <math>x</math> such that <math>n+x</math> is a palindrome. Find the value of <math>{\sum_{n=1}^{100}S(n)}.</math>
  
 
[[2022 SSMO Tiebreaker Round Problems/Problem 1|Solution]]
 
[[2022 SSMO Tiebreaker Round Problems/Problem 1|Solution]]
 +
 
==Problem 2==
 
==Problem 2==
  
Line 9: Line 10:
  
 
[[2022 SSMO Tiebreaker Round Problems/Problem 2|Solution]]
 
[[2022 SSMO Tiebreaker Round Problems/Problem 2|Solution]]
 +
 
==Problem 3==
 
==Problem 3==
  

Latest revision as of 15:22, 2 May 2025

Problem 1

For all positive integers $n,$ let $S(n)$ denote the least positive integer $x$ such that $n+x$ is a palindrome. Find the value of ${\sum_{n=1}^{100}S(n)}.$

Solution

Problem 2

Let $P(x) = x^3 - 7x^2 + 9x - 2$. If $P(x) = (x - a)^3 + b(x - a) + c$ where $a, b, c$ are real numbers, then the value of $a - b - c$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $m + n$.

Solution

Problem 3

Find the sum of the 5 smallest positive prime numbers $p$ such that $3^n+4^n\equiv0 \pmod p$ has no positive integer solutions for $n$.

Solution