Difference between revisions of "2007 IMO Shortlist Problems/A2"
(→Problem) (Tag: Blanking) |
|||
| Line 1: | Line 1: | ||
| + | == Problem == | ||
| + | (''Bulgaria'') | ||
| + | Consider those functions <math>f:\mathbb{N}\to\mathbb{N}</math> which satisfy the condition | ||
| + | <center><math>f(m+n)\ge f(m)+f(f(n))-1</math></center> | ||
| + | for all <math>m, n\in\mathbb{N}</math>. Find all possible values of <math>f(2007).</math> | ||
| + | (<math>\mathbb{N}</math> denotes the set of all integers.) | ||
Revision as of 07:30, 3 August 2023
Problem
(Bulgaria)
Consider those functions
which satisfy the condition
for all
. Find all possible values of
(
denotes the set of all integers.)