Difference between revisions of "2022 SSMO Relay Round 1 Problems/Problem 3"

(Created page with "==Problem== Let <math>T=</math> TNYWR. Now, let <math>ABC</math> a triangle such that <math>AB=T,</math> <math>AC=100</math>, and <math>\angle{ABC}=36^{\circ}.</math> Find the...")
 
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let <math>T=</math> TNYWR. Now, let <math>ABC</math> a triangle such that <math>AB=T,</math> <math>AC=100</math>, and <math>\angle{ABC}=36^{\circ}.</math> Find the remainder when the product of all possible values of <math>BC</math> is divided by <math>1000</math>.
+
Let <math>T=TNYWR</math>. Now, let <math>ABC</math> a triangle such that <math>AB=T,</math> <math>AC=100</math>, and <math>\angle{ABC}=36^{\circ}.</math> Find the remainder when the product of all possible values of <math>BC</math> is divided by <math>1000</math>.
  
 
==Solution==
 
==Solution==

Latest revision as of 19:23, 2 May 2025

Problem

Let $T=TNYWR$. Now, let $ABC$ a triangle such that $AB=T,$ $AC=100$, and $\angle{ABC}=36^{\circ}.$ Find the remainder when the product of all possible values of $BC$ is divided by $1000$.

Solution