Difference between revisions of "2022 SSMO Relay Round 4 Problems/Problem 2"

(Created page with "==Problem== The roots of <math>f(x)=x^3+5x+8</math> are <math>r_1,r_2,r_3.</math> Let <math>g_n(x)</math> be a polynomial with roots <math>r_1+n, r_2+n,r_3+n.</math> If<cmath>...")
 
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
The roots of <math>f(x)=x^3+5x+8</math> are <math>r_1,r_2,r_3.</math> Let <math>g_n(x)</math> be a polynomial with roots <math>r_1+n, r_2+n,r_3+n.</math> If<cmath>S=\sum_{n=1}^{T}(-1)^{n}g_n(5),</cmath>find the remainder when <math>S</math> is divided by 1000.
+
Let <math>T=TNYWR</math>. The roots of <math>f(x)=x^3+5x+8</math> are <math>r_1,r_2,r_3.</math> Let <math>g_n(x)</math> be a polynomial with roots <math>r_1+n, r_2+n,r_3+n.</math> If<cmath>S=\sum_{n=1}^{T}(-1)^{n}g_n(5),</cmath>find the remainder when <math>S</math> is divided by 1000.
  
 
==Solution==
 
==Solution==

Latest revision as of 19:22, 2 May 2025

Problem

Let $T=TNYWR$. The roots of $f(x)=x^3+5x+8$ are $r_1,r_2,r_3.$ Let $g_n(x)$ be a polynomial with roots $r_1+n, r_2+n,r_3+n.$ If\[S=\sum_{n=1}^{T}(-1)^{n}g_n(5),\]find the remainder when $S$ is divided by 1000.

Solution