Difference between revisions of "2023 SSMO Team Round Problems/Problem 11"
(Created page with "==Problem== Let <math>ABCD</math> be a cyclic quadrilateral such that <math>AC</math> is the diameter. Let <math>P</math> be the orthocenter of <math>ABD</math>. Define <math>...") |
|||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
+ | Since <math>AC</math> is a diameter, <math>\angle ABC</math> and <math>\angle ADC</math> are right angles. Therefore, since <math>\angle XBY = \angle XDY = 90^\circ</math>, quadrilateral <math>BXYD</math> is cyclic. | ||
+ | |||
+ | It is well known that <math>BCDP</math> is a parallelogram, which can be proven through angle chasing. | ||
+ | |||
+ | Using the Sine Area Formula, we have <cmath>[CBPD] = 2 \cdot \frac{1}{2} \cdot CB \cdot CD \cdot \sin\angle BCD</cmath> and <cmath>[AXY] = \frac{1}{2} \cdot AX \cdot AY \cdot \sin\angle BAD.</cmath> | ||
+ | |||
+ | Thus, the ratio of the areas is <cmath>\frac{[CBPD]}{[AXY]} = 2 \cdot \frac{CB \cdot CD}{AX \cdot AY},</cmath> since <math>\sin\angle BCD = \sin\angle BAD</math>. | ||
+ | |||
+ | Given that the diameter has length <math>\sqrt{65}</math> and <math>AD = 7</math>, let <math>XC = a</math>. Then, by Power of a Point from <math>X</math>, we have | ||
+ | <cmath>a(a + 4) = \left(\sqrt{a^2 - 1}\right)\left(\sqrt{a^2 - 1} + 8\right).</cmath> | ||
+ | |||
+ | Expanding both sides: | ||
+ | <cmath>\begin{align*} | ||
+ | a^2 + 4a &= a^2 - 1 + 8\sqrt{a^2 - 1} \\ | ||
+ | 4a + 1 &= 8\sqrt{a^2 - 1} \\ | ||
+ | 16a^2 + 8a + 1 &= 64a^2 - 64. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | Solving gives <math>XC = \frac{5}{4}</math>. Since <math>CX \cdot CD = CY \cdot CB</math>, it follows that <math>CY = 5</math>. | ||
+ | |||
+ | Therefore, <math>BX = \frac{3}{4}</math> and <math>DY = 3</math>. Then the area ratio is <cmath>2 \cdot \frac{1 \cdot 4}{\frac{35}{4} \cdot 10} = \frac{16}{175},</cmath> so the final answer is <math>\boxed{191}</math>. | ||
+ | |||
+ | <asy> | ||
+ | size(7cm); | ||
+ | point a, b, c, d, p, x, y; | ||
+ | a = (0,0); | ||
+ | b = (64/sqrt(65),8/sqrt(65)); | ||
+ | c = (sqrt(65),0); | ||
+ | d = (49/sqrt(65), -28/sqrt(65)); | ||
+ | x = intersectionpoint(line(a,b),line(c,d)); | ||
+ | y = intersectionpoint(line(a,d),line(b,c)); | ||
+ | |||
+ | triangle t = triangle(a,b,d); | ||
+ | |||
+ | p = orthocenter(t); | ||
+ | |||
+ | filldraw(circumcircle(t), opacity(0.1)+cyan, blue); | ||
+ | filldraw(a--x--y--cycle, opacity(0.3)+palered, red); | ||
+ | filldraw(p--b--c--d--cycle, opacity(0.3)+palegreen, green); | ||
+ | draw(b--d, dashed+green); | ||
+ | draw(x--c--y, blue); | ||
+ | |||
+ | dot("$A$", a, dir(180)); | ||
+ | dot("$B$", b, dir(45)); | ||
+ | dot("$C$", c, dir(0)); | ||
+ | dot("$D$", d, dir(270)); | ||
+ | dot("$P$", p, dir(180)); | ||
+ | dot("$X$", x, dir(50)); | ||
+ | dot("$Y$", y, dir(270)); | ||
+ | </asy> |
Revision as of 21:29, 9 September 2025
Problem
Let be a cyclic quadrilateral such that
is the diameter. Let
be the orthocenter of
. Define
, and
. If
,
, and
, suppose
Find
.
Solution
Since is a diameter,
and
are right angles. Therefore, since
, quadrilateral
is cyclic.
It is well known that is a parallelogram, which can be proven through angle chasing.
Using the Sine Area Formula, we have and
Thus, the ratio of the areas is since
.
Given that the diameter has length and
, let
. Then, by Power of a Point from
, we have
Expanding both sides:
Solving gives . Since
, it follows that
.
Therefore, and
. Then the area ratio is
so the final answer is
.
size(7cm); point a, b, c, d, p, x, y; a = (0,0); b = (64/sqrt(65),8/sqrt(65)); c = (sqrt(65),0); d = (49/sqrt(65), -28/sqrt(65)); x = intersectionpoint(line(a,b),line(c,d)); y = intersectionpoint(line(a,d),line(b,c)); triangle t = triangle(a,b,d); p = orthocenter(t); filldraw(circumcircle(t), opacity(0.1)+cyan, blue); filldraw(a--x--y--cycle, opacity(0.3)+palered, red); filldraw(p--b--c--d--cycle, opacity(0.3)+palegreen, green); draw(b--d, dashed+green); draw(x--c--y, blue); dot("$A$", a, dir(180)); dot("$B$", b, dir(45)); dot("$C$", c, dir(0)); dot("$D$", d, dir(270)); dot("$P$", p, dir(180)); dot("$X$", x, dir(50)); dot("$Y$", y, dir(270)); (Error making remote request. Unknown error_msg)