|
|
Line 3: |
Line 3: |
| | | |
| ==Solution== | | ==Solution== |
− | By Vieta's relation we get, <math>\sum_{cyc}{}\alpha=2</math> <math>\sum_{cyc}{}\alpha\beta=0</math> and <math>\prod_{cyc}{}\alpha=4</math>
| |
− |
| |
− | Therefore we have to find the value of <cmath>\prod_{cyc}{}(\alpha^3+\beta\gamma)\implies\prod_{cyc}{}\left(\alpha^3+\frac{4}{\alpha}\right)\implies\prod_{cyc}{}\left(\frac{\alpha^4+4}{\alpha}\right)</cmath>
| |
− | <cmath>\prod_{cyc}{}\left(\frac{\alpha^4+4}{\alpha}\right)=\frac{\prod_{cyc}{}(\alpha-(1+i))(\alpha-(1-i))(\alpha+(1-i))(\alpha+(1+i))}{\alpha\beta\gamma}</cmath>
| |
Latest revision as of 14:33, 9 September 2025