Difference between revisions of "Angle addition identities"
(→Proofs) |
(→Proofs) |
||
Line 10: | Line 10: | ||
==Proofs== | ==Proofs== | ||
+ | |||
+ | ==Proof 1== | ||
<asy> | <asy> | ||
Line 48: | Line 50: | ||
<math>\fontsize{18}{27}\selectfont \tan (\alpha + \beta ) = \frac{\sin (\alpha + \beta )}{\cos (\alpha + \beta )} = \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta} = \frac{\frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta - \sin \alpha \sin \beta}{\cos \alpha \cos \beta}} = \frac{\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta}}{1 - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}</math> | <math>\fontsize{18}{27}\selectfont \tan (\alpha + \beta ) = \frac{\sin (\alpha + \beta )}{\cos (\alpha + \beta )} = \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta} = \frac{\frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta - \sin \alpha \sin \beta}{\cos \alpha \cos \beta}} = \frac{\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta}}{1 - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}</math> | ||
+ | |||
+ | ==Proof 2== | ||
+ | |||
+ | Let point <math>A(\cos\alpha, \sin\alpha)</math> and point <math>B(\cos\beta, \sin\beta)</math> be two points on the unit circle such that <math>\alpha > \beta</math>. | ||
+ | |||
+ | By the law of cosine, we know that: | ||
+ | |||
+ | <cmath>\cos (\alpha - \beta) = \cos \angle AOB = \frac{1^2+1^2-\vert AB \vert^2}{2 \cdot 1 \cdot 1}</cmath> | ||
+ | |||
+ | Apply the distance formula to obtain the length of <math>AB</math>: | ||
+ | |||
+ | \begin{align*} | ||
+ | \vert AB \vert &= \sqrt{(\cos\alpha - \cos\beta)^2 + (\sin\alpha - \sin\beta)^2} \\ | ||
+ | &= \sqrt{(\cos^2\alpha + \sin^2\alpha) + (\cos^2\beta + \sin^2\beta) - 2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta} \\ | ||
+ | &= \sqrt{2-2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta} | ||
+ | \end{align*} | ||
+ | |||
+ | Substituting and rearranging to get: | ||
+ | |||
+ | <cmath>\cos (\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta</cmath> | ||
+ | |||
+ | See that the identity holds true (and makes sense geometrically) when <math>\alpha < \beta</math> due to the fact that <math>\cos{(\beta - \alpha)} = \cos{(\alpha - \beta)}</math>. | ||
+ | |||
+ | Then, let <math>\theta = -\beta</math> and substitute it into the identity and the angle addition identity for cosine follows. | ||
+ | |||
+ | ~[[User:Bloggish|Bloggish]] | ||
==See Also== | ==See Also== | ||
* [[Trigonometric identities]] | * [[Trigonometric identities]] |
Latest revision as of 10:05, 18 March 2025
The trigonometric angle addition identities state the following identities:
This article is a stub. Help us out by expanding it.
Contents
Proofs
Proof 1
Proof 2
Let point and point
be two points on the unit circle such that
.
By the law of cosine, we know that:
Apply the distance formula to obtain the length of :
\begin{align*} \vert AB \vert &= \sqrt{(\cos\alpha - \cos\beta)^2 + (\sin\alpha - \sin\beta)^2} \\ &= \sqrt{(\cos^2\alpha + \sin^2\alpha) + (\cos^2\beta + \sin^2\beta) - 2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta} \\ &= \sqrt{2-2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta} \end{align*}
Substituting and rearranging to get:
See that the identity holds true (and makes sense geometrically) when due to the fact that
.
Then, let and substitute it into the identity and the angle addition identity for cosine follows.