Difference between revisions of "1985 AHSME Problems/Problem 29"
Sevenoptimus (talk | contribs) (Improved solutions, formatting, and LaTeX) |
(→Solution 1) |
||
Line 4: | Line 4: | ||
<math> \mathrm{(A)\ } 15880 \qquad \mathrm{(B) \ }17856 \qquad \mathrm{(C) \ } 17865 \qquad \mathrm{(D) \ } 17874 \qquad \mathrm{(E) \ }19851 </math> | <math> \mathrm{(A)\ } 15880 \qquad \mathrm{(B) \ }17856 \qquad \mathrm{(C) \ } 17865 \qquad \mathrm{(D) \ } 17874 \qquad \mathrm{(E) \ }19851 </math> | ||
− | ==Solution== | + | ==Solution 1== |
By the formula for the sum of a geometric series, <cmath>\begin{align*}a &= 8 \cdot 10^0 + 8 \cdot 10^1 + \dotsb + 8 \cdot 10^{1984} \\ &= \frac{8\left(10^{1985}-1\right)}{10-1} \\ &= \frac{8\left(10^{1985}-1\right)}{9},\end{align*}</cmath> and similarly <cmath>b = \frac{5\left(10^{1985}-1\right)}{9},</cmath> so <cmath>\begin{align*}9ab &= 9\cdot\frac{8\left(10^{1985}-1\right)}{9}\cdot\frac{5\left(10^{1985}-1\right)}{9} \\ &= \frac{40\left(10^{1985}-1\right)^2}{9} \\ &= \frac{40\left(10^{3970}-2 \cdot 10^{1985}+1\right)}{9} \\ &= \frac{4\left(10^{3971}-2 \cdot 10^{1986}+10\right)}{9}.\end{align*}</cmath> | By the formula for the sum of a geometric series, <cmath>\begin{align*}a &= 8 \cdot 10^0 + 8 \cdot 10^1 + \dotsb + 8 \cdot 10^{1984} \\ &= \frac{8\left(10^{1985}-1\right)}{10-1} \\ &= \frac{8\left(10^{1985}-1\right)}{9},\end{align*}</cmath> and similarly <cmath>b = \frac{5\left(10^{1985}-1\right)}{9},</cmath> so <cmath>\begin{align*}9ab &= 9\cdot\frac{8\left(10^{1985}-1\right)}{9}\cdot\frac{5\left(10^{1985}-1\right)}{9} \\ &= \frac{40\left(10^{1985}-1\right)^2}{9} \\ &= \frac{40\left(10^{3970}-2 \cdot 10^{1985}+1\right)}{9} \\ &= \frac{4\left(10^{3971}-2 \cdot 10^{1986}+10\right)}{9}.\end{align*}</cmath> | ||
Line 10: | Line 10: | ||
Using long division, and noting that <math>80 = 8 \cdot 9 + 8</math> and <math>81 = 9 \cdot 9</math>, it follows that <cmath>\frac{4\left(10^{3971}-2 \cdot 10^{1986}+10\right)}{9} = 11 \dotsb 1088 \dotsb 890,</cmath> with <math>1984</math> ones, <math>1</math> zero, then <math>1984</math> eights, <math>1</math> nine, and a final zero. Lastly, using long multiplication and noting that <math>9 \cdot 4 = 36</math>, <math>8 \cdot 4 = 32</math>, and <math>8 \cdot 4 + 3 = 35</math>, we obtain <cmath>\frac{4\left(10^{3971}-2 \cdot 10^{1986}+10\right)}{9} = 44 \dotsb 4355 \dotsb 560,</cmath> where there are <math>1984</math> fours, <math>1</math> three, <math>1984</math> fives, <math>1</math> six, and a final zero, so the sum of the digits is <cmath>\begin{align*}1984 \cdot 4 + 3 + 1984 \cdot 5 + 6 + 0 &= 1984 \cdot 9 + 9 \\ &= 1985 \cdot 9 \\ &= \boxed{\text{(C)} \ 17865}.\end{align*}</cmath> | Using long division, and noting that <math>80 = 8 \cdot 9 + 8</math> and <math>81 = 9 \cdot 9</math>, it follows that <cmath>\frac{4\left(10^{3971}-2 \cdot 10^{1986}+10\right)}{9} = 11 \dotsb 1088 \dotsb 890,</cmath> with <math>1984</math> ones, <math>1</math> zero, then <math>1984</math> eights, <math>1</math> nine, and a final zero. Lastly, using long multiplication and noting that <math>9 \cdot 4 = 36</math>, <math>8 \cdot 4 = 32</math>, and <math>8 \cdot 4 + 3 = 35</math>, we obtain <cmath>\frac{4\left(10^{3971}-2 \cdot 10^{1986}+10\right)}{9} = 44 \dotsb 4355 \dotsb 560,</cmath> where there are <math>1984</math> fours, <math>1</math> three, <math>1984</math> fives, <math>1</math> six, and a final zero, so the sum of the digits is <cmath>\begin{align*}1984 \cdot 4 + 3 + 1984 \cdot 5 + 6 + 0 &= 1984 \cdot 9 + 9 \\ &= 1985 \cdot 9 \\ &= \boxed{\text{(C)} \ 17865}.\end{align*}</cmath> | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | Factoring out the 8 and the 5, we get <math>9ab = 10\cdot4\cdot9\cdot111 \dotsb 1 \ cdot 111\dotsb1,</math> where there are 1985 1s in both numbers | ||
+ | |||
+ | This is equal to <cmath>10 \cdot 4 \cdot (1000\dotsb 0 - 1) \cdot 111\dotsb 1</cmath> where there is an initial 1 followed by 1985 0s and the second number has 1985 1s. | ||
+ | |||
+ | Multiplying then subtracting gives us <math>4 \cdot 10 \cdot 111\dotsb 10888 \dotsb 89,</math> where there are 1984 1s and 1984 8s. | ||
+ | |||
+ | Multiplying one last time, then adding the 0 at the and gives us <math>44 \dotsb 4355 \dotsb 560,</math> where there are <math>1984</math> fours, <math>1</math> three, <math>1984</math> fives, <math>1</math> six, and a final zero, so the sum of the digits is <math>1984(4+5)+6+3 = 1985 \cdot 9 = 17865</math> | ||
==See Also== | ==See Also== | ||
{{AHSME box|year=1985|num-b=28|num-a=30}} | {{AHSME box|year=1985|num-b=28|num-a=30}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 11:51, 26 March 2025
Contents
Problem
In their base representations, the integer
consists of a sequence of
eights and the integer
consists of a sequence of
fives. What is the sum of the digits of the base
representation of the integer
?
Solution 1
By the formula for the sum of a geometric series, and similarly
so
We now compute the decimal expansion of this expression. Firstly, , with
one and
zeroes, and
, with
two and
zeroes. Subtracting therefore gives
where there are
nines followed by
eight and then
zeroes. Adding
transforms this to
, now with
nines followed by
eight,
zeroes,
one, and a final zero.
Using long division, and noting that and
, it follows that
with
ones,
zero, then
eights,
nine, and a final zero. Lastly, using long multiplication and noting that
,
, and
, we obtain
where there are
fours,
three,
fives,
six, and a final zero, so the sum of the digits is
Solution 2
Factoring out the 8 and the 5, we get where there are 1985 1s in both numbers
This is equal to where there is an initial 1 followed by 1985 0s and the second number has 1985 1s.
Multiplying then subtracting gives us where there are 1984 1s and 1984 8s.
Multiplying one last time, then adding the 0 at the and gives us where there are
fours,
three,
fives,
six, and a final zero, so the sum of the digits is
See Also
1985 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 28 |
Followed by Problem 30 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.