Difference between revisions of "Lifting the Exponent Lemma"
m (Formatting) |
|||
Line 2: | Line 2: | ||
Let <math>p</math> refer to an odd prime. We can split up LTE into six identities (where <math>\nu_p(Z)</math> represents the largest factor of <math>p</math> that divides <math>Z</math>): | Let <math>p</math> refer to an odd prime. We can split up LTE into six identities (where <math>\nu_p(Z)</math> represents the largest factor of <math>p</math> that divides <math>Z</math>): | ||
− | |||
− | |||
<math>\nu_p(x^n-y^n)=\nu_p(x-y)+\nu_p(n)</math>, if <math>p|x-y</math>. | <math>\nu_p(x^n-y^n)=\nu_p(x-y)+\nu_p(n)</math>, if <math>p|x-y</math>. | ||
Line 12: | Line 10: | ||
<math>\nu_p(x^n+y^n)=\nu_p(x+y)+\nu_p(n)</math>, if <math>p|x+y</math> and <math>n</math> is odd. | <math>\nu_p(x^n+y^n)=\nu_p(x+y)+\nu_p(n)</math>, if <math>p|x+y</math> and <math>n</math> is odd. | ||
− | |||
− | |||
<math>\nu_2(x^n+y^n)=1</math>, if <math>2|x+y</math> and <math>n</math> is even. | <math>\nu_2(x^n+y^n)=1</math>, if <math>2|x+y</math> and <math>n</math> is even. | ||
<math>\nu_2(x^n+y^n)=\nu(x+y)</math> if <math>2|x+y</math> and <math>n</math> is odd. | <math>\nu_2(x^n+y^n)=\nu(x+y)</math> if <math>2|x+y</math> and <math>n</math> is odd. | ||
+ | |||
+ | == External Links == | ||
+ | |||
+ | * [//arxiv.org/abs/1810.11456] | ||
+ | * [//services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvYy82LzdjNTI1OGIyMmNjYmZkZGY4MDhhY2ViZTc3MGE1NDRmMzFhMTEzLnBkZg==&rn=TGlmdGluZyBUaGUgRXhwb25lbnQgTGVtbWEgLSBBbWlyIEhvc3NlaW4gUGFydmFyZGkgLSBWZXJzaW9uIDMucGRm] | ||
+ | |||
+ | {{stub}} |
Revision as of 13:04, 11 March 2025
Lifting the exponent allows one to calculate the highest power of an integer that divides various numbers given certain information. It is extremely powerful and can sometimes "blow up" otherwise challenging problems.
Let refer to an odd prime. We can split up LTE into six identities (where
represents the largest factor of
that divides
):
, if
.
if
.
, if
and
is even.
, if
and
is odd.
, if
and
is even.
if
and
is odd.
External Links
This article is a stub. Help us out by expanding it.