Difference between revisions of "2002 AMC 10P Problems/Problem 2"

(Solution 1)
(Solution 1)
Line 17: Line 17:
 
We can use the sum of an arithmetic series to solve this problem.
 
We can use the sum of an arithmetic series to solve this problem.
  
Let the first integer equal a. The last integer in this string will be <math>a+10.</math> Plugging in <math>n=11, a_1=a,</math> and <math>a_n=a+10</math> into <math>\frac{n(a_1 + a_n)}{2}=2002,</math> we get:
+
Let the first integer equal <math>a.</math> The last integer in this string will be <math>a+10.</math> Plugging in <math>n=11, a_1=a,</math> and <math>a_n=a+10</math> into <math>\frac{n(a_1 + a_n)}{2}=2002,</math> we get:
  
 
\begin{align*}
 
\begin{align*}

Revision as of 07:59, 15 July 2024

Problem 2

The sum of eleven consecutive integers is $2002.$ What is the smallest of these integers?

$\text{(A) }175 \qquad \text{(B) }177 \qquad \text{(C) }179 \qquad \text{(D) }180 \qquad \text{(E) }181$

Solution 1

We can use the sum of an arithmetic series to solve this problem.

Let the first integer equal $a.$ The last integer in this string will be $a+10.$ Plugging in $n=11, a_1=a,$ and $a_n=a+10$ into $\frac{n(a_1 + a_n)}{2}=2002,$ we get:

\begin{align*} \frac{11(a + a+10)}{2}&=2002 \\ 11(2a+10)&=4004 \\ 2a+10&=364 \\ 2a&=354 \\ a&=177\\ \end{align*}

Thus, our answer is $\boxed{\textbf{(B) }177}$

See Also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png