Difference between revisions of "2024 IMO Problems/Problem 4"
Hhuangterry (talk | contribs) |
|||
Line 6: | Line 6: | ||
Prove that <math>\angle KIL + \angle YPX = 180^{\circ}</math> | Prove that <math>\angle KIL + \angle YPX = 180^{\circ}</math> | ||
. | . | ||
+ | ==Video Solution== | ||
+ | https://youtu.be/WnZv3fdpFXo |
Revision as of 03:46, 19 July 2024
Let be a triangle with
. Let the incentre and incircle of triangle
be
and
, respectively. Let
be the point on line
different from
such that the line
through
parallel to
is tangent to
. Similarly, let
be the point on line
different from
such that the line through
parallel to
is tangent to
. Let
intersect the circumcircle of
triangle
again at
. Let
and
be the midpoints of
and
, respectively.
Prove that
.