Difference between revisions of "2024 AMC 10A Problems/Problem 14"
m (Protected "2024 AMC 10A Problems/Problem 14" ([Edit=Allow only administrators] (expires 04:59, 8 November 2024 (UTC)) [Move=Allow only administrators] (expires 04:59, 8 November 2024 (UTC))) [cascading]) |
MRENTHUSIASM (talk | contribs) |
||
Line 1: | Line 1: | ||
+ | == Problem == | ||
+ | One side of an equilateral triangle of height <math>24</math> lies on line <math>\ell</math>. A circle of radius <math>12</math> is tangent to line <math>\ | ||
+ | ell</math> and is externally tangent to the triangle. The area of the region exterior to the triangle and the circle and bounded by the triangle, the circle, and line <math>\ell</math> can be written as <math>a \sqrt{b} - c \pi</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers and <math>b</math> is not divisible by the square of any prime. What is <math>a + b + c</math>? | ||
+ | |||
+ | <math>\textbf{(A)}~72\qquad\textbf{(B)}~73\qquad\textbf{(C)}~74\qquad\textbf{(D)}~75\qquad\textbf{(E)}~76</math> | ||
+ | |||
+ | == Diagram == |
Revision as of 17:34, 8 November 2024
Problem
One side of an equilateral triangle of height lies on line
. A circle of radius
is tangent to line
and is externally tangent to the triangle. The area of the region exterior to the triangle and the circle and bounded by the triangle, the circle, and line
can be written as
, where
,
, and
are positive integers and
is not divisible by the square of any prime. What is
?