Difference between revisions of "2024 AMC 12A Problems/Problem 14"
(Redirected page to 2024 AMC 10A Problems/Problem 21) (Tag: New redirect) |
(Removed redirect to 2024 AMC 10A Problems/Problem 21) (Tag: Removed redirect) |
||
Line 1: | Line 1: | ||
− | # | + | {{duplicate|[[2024 AMC 12A Problems/Problem 14|2024 AMC 12A #14]] and [[2024 AMC 10A Problems/Problem 18|2024 AMC 10A #18]]}} |
+ | |||
+ | ==Problem== | ||
+ | Points <math>X</math> and <math>Y</math> lie on sides <math>\overline{BC}</math> and <math>\overline{CD}</math>, respectively, of parallelogram <math>ABCD</math> such that <math>\angle AXC = \angle AYC = 90^{\circ}</math>. Suppose <math>BX = 5</math> and <math>DY = 3</math>, as shown. If <math>ABCD</math> has perimeter <math>48</math>, what is its area? | ||
+ | |||
+ | <asy> | ||
+ | import olympiad; import graph; | ||
+ | size(8cm); | ||
+ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
+ | pen dotstyle = black; /* point style */ | ||
+ | pair A = (0, 0), B = (15, 0), C = (12, -6 * sqrt(2)), D = (-3, -6 * sqrt(2)); | ||
+ | pair X = (15 - 3 * 5/9, -6 * sqrt(2) * 5 / 9); | ||
+ | pair Y = (0, -6 * sqrt(2)); | ||
+ | dot(A); dot(B); dot(C); dot(D); dot(X); dot(Y); | ||
+ | draw(A--B--C--D--cycle); | ||
+ | draw(A--X); draw(A--Y); | ||
+ | draw(rightanglemark(A,X,C,15)); draw(rightanglemark(A,Y,C,15)); | ||
+ | label("$A$", A, N * 1.5); | ||
+ | label("$B$", B, N * 1.5); | ||
+ | label("$C$", C, S * 1.5); | ||
+ | label("$D$", D, S * 1.5); | ||
+ | label("$X$", X, E * 1.5); | ||
+ | label("$Y$", Y, S * 1.5); | ||
+ | label("$3$", midpoint(D--Y), S * 1.5); | ||
+ | label("$5$", midpoint(B--X), E * 1.5); | ||
+ | </asy> | ||
+ | |||
+ | <math>\textbf{(A)}~40\sqrt{5}\qquad\textbf{(B)}~56\sqrt{3}\qquad\textbf{(C)}~48\sqrt{7}\qquad\textbf{(D)}~90\sqrt{2}\qquad\textbf{(E)}~60\sqrt{5}</math> | ||
+ | |||
+ | ==Solution== | ||
+ | Note that opposite angles in a parallelogram are equal, so <math>\angle ADY = \angle ABX</math>. Also, <math>\angle AYD = \angle AXB = 90^{\circ}</math>, so <math>\triangle AYD \sim \triangle AXB</math>. The ratio of similarity of these triangles is <math>\tfrac{AB}{AD} = \tfrac{BX}{DY} = \tfrac{5}{3}</math>, so let <math>AB = 5x</math> and <math>AD = 3x</math>. The perimeter of <math>ABCD</math> is <math>5x + 3x + 5x + 3x = 16x = 48</math>, so <math>x = 3</math>. Therefore <math>AD = 3 \cdot 3 = 9</math>, <math>AB = 5 \cdot 3 = 15</math>, and the area of <math>ABCD</math> is <math>AY \cdot AB = \sqrt{9^{2} - 3^{2}} \cdot 15 = \sqrt{72} \cdot 15 = 6\sqrt{2} \cdot 15 = \boxed{\textbf{(D)}~90\sqrt{2}}</math>. | ||
+ | |||
+ | ==See also== | ||
+ | {{AMC12 box|year=2024|ab=A|num-b=13|num-a=15}} | ||
+ | {{AMC10 box|year=2024|ab=A|num-b=17|num-a=19}} | ||
+ | {{MAA Notice}} |
Revision as of 21:43, 20 March 2025
- The following problem is from both the 2024 AMC 12A #14 and 2024 AMC 10A #18, so both problems redirect to this page.
Problem
Points and
lie on sides
and
, respectively, of parallelogram
such that
. Suppose
and
, as shown. If
has perimeter
, what is its area?
Solution
Note that opposite angles in a parallelogram are equal, so . Also,
, so
. The ratio of similarity of these triangles is
, so let
and
. The perimeter of
is
, so
. Therefore
,
, and the area of
is
.
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2024 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.